
Lecture 8: Application Layer
P2P Applications and DHTs

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved

as well as from slides by Abraham Matta at Boston University, slides by Daniel
Zappala at Brigham and Young University, and some material from Computer

Networks by Tannenbaum and Wetherall.

1. Announcements
– hwk 3 due today at 11:59p, hwk 4 posted this evening

• solution code for homework 4 will be posted once homework3 turned in

– hopefully will have hw1 and hw2 graded to give back to you tomorrow
• Will post on piazza and leave outside my office

2. Peer-to-peer applications

3. BitTorrent

4. Distributed hash tables

vumanfredi@wesleyan.edu 2

P2P Applications

vumanfredi@wesleyan.edu 3

No always-on server
– arbitrary end systems directly

communicate
– peers are intermittently connected

and change IP addresses

Examples
– file distribution (BitTorrent)
– VoIP (Skype)

Pros: highly scalable!
– since all peers are servers

Cons: difficult to manage
– how do you find peers and content?

How can an ordinary person, with limited money and bandwidth,
serve content to a worldwide audience?

4

Full duplex
– can upload and download at same time
– e.g, wired links, telephone line

Half-duplex links
– cannot upload and download simultaneously
– e.g., wireless links, walkie-talkies

vumanfredi@wesleyan.edu 5

Question
– how much time to distribute file (size F) from one server to N peers?
– peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

File size,
F bits

server
upload rate

i’s upload rate

i’s download
rate

u2 d2

u1 d1

di

ui

vumanfredi@wesleyan.edu 6

Server transmission
– sequentially sends (uploads)

N file copies
• time to send one copy: F/us

• time to send N copies: NF/us

Client
– each client downloads file copy

• dmin = slowest client download rate
• slowest client download time: F/dmin

Server is
bottleneck

Time to distribute F
to N clients using
client-server approach

Dcs > max{NF/us,, F/dmin }

us

network
di

ui

F

increases linearly in N (for large N)

Slowest client is
bottleneck

7

Server transmission
– must upload at least one copy
– time to send one copy: F/us

Client
– each client downloads copy

• slowest client download time: F/dmin

– as aggregate must download NF bits
• max upload rate (limiting max

download rate): us + Sui

Time to distribute F
to N clients using
P2P approach

us

network
di

ui

F

DP2P > max{F/us, F/dmin,, NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

Server is
bottleneck

Slowest peer’s
download rate
is bottleneck

Upload rate
is bottleneck

8

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

u = client upload rate, F/u = 1 hour, us = 10u, dmin ≥ us

P2P download is self-scaling: the more peers that
download, the more bandwidth is available for upload

Number of clients/peers

9

Self-scaling
– more peers means more bandwidth

Robustness
– if a peer fails, another peer can do the same job

• harder to set up another server

Better privacy
– no single provider able to monitoring entire system

10vumanfredi@wesleyan.edu

P2P Applications

vumanfredi@wesleyan.edu 11

P2P file sharing protocol
– developed by Bram Cohen in 2001 (www.bittorrent.org)
– 2013: responsible for ~3% of all bandwidth used worldwide
– break files into chunks, download chunks from different users

• makes better use of bandwidth than downloading from one user
• upload bandwidth constrains download rate and is often less than

download bandwidth

BitTorrent tracker (server): TCP, port 6969
– keeps track of which peers are currently downloading which files
– assists with making download more efficient

BitTorrent client: TCP, port 6881-6889
– perform p2p file sharing using BitTorrent protocol
– BitTorrent client is no longer open source but still free
– many free open source clients

• e.g., qBitTorrent: https://github.com/qbittorrent/qBittorrent 12

1. Create “torrent” and distribute
– metainfo file derived from content you want to publish

• includes filename, file size, hash info, tracker info
• anyone who wants to download content needs .torrent file

– can typically create using BitTorrent client

2. Start a downloader called a “seed”
– peer that has entire file, must upload at least one complete copy

13vumanfredi@wesleyan.edu

1. Bootstrapping
– download .torrent file from web server
– contact listed tracker for list of peers

2. Peer discovery
– periodically contact tracker if current peers don’t have content you

need or they leave the system

3. Content location
– check with each peer to determine which blocks they have
– download rarest blocks first

14vumanfredi@wesleyan.edu

File divided into 256Kb chunks
– peers in swarm send/receive file chunks
– Q: why 256 Kb chunks?

Tracker: tracks peers
participating in

swarm

Swarm: group of peers exchanging
chunks of file for one torrent

Alice arrives, has no chunks …
… registers with tracker, gets

torrent, list of peers (over HTTP)
… and begins exchanging

file chunks with peers in swarm

Seed: peer that
has entire file

15

At any given time, different peers have different
subsets of file chunks

Periodically, Alice asks each
peer for list of chunks they
have, requests missing chunks
from peers, rarest first. While
downloading, Alice uploads
chunks to other peers

16

Freeloaders
– peers who download without uploading
– p2p system is only self-scaling if every peer adds resources

• users who download without uploading
• break self-scaling behavior of p2p file distribution

Q: how do peers encourage each other to upload content as
well as download content for themselves?

Solution: Tit-for-tat
– serve content to k connections at a time
– serve connections that give you best download rate
– periodically serve content to a random connection to see if it can do

better than a current connection
– deny content to all others 17

With higher upload rate, can
find better trading partners &

get file faster!

Tit-for-tat
– Alice sends chunks to 4 peers sending her chunks at highest rate

• other peers are choked by Alice (do not receive chunks from her)
• re-evaluate top 4 every 10 secs

– every 30 secs: randomly select another peer, starts sending chunks
• “optimistically unchoke” this peer, newly chosen peer may join top 4 18

Churn: peers may come and go
– once peer has entire file

• it may (selfishly) leave
• or (altruistically) remain in swarm

Consequence
– peer may change peers with whom it exchanges chunks
– need mechanism to locate peers with needed chunks even as

churn occurs

Q: How does a peer find other peers that have content it
wants to download?

– not all peers have all content
– every content provider creates a content description called a torrent

vumanfredi@wesleyan.edu 19

Centralized directory
– Napster: led to its demise due to copyright infringement

• centralized solution makes it easy to find people to sue

– BitTorrent (and centralized tracker)

Decentralized directory
– Gnutella

• flood queries, bound by number of hops
– leads to overload on peers
– hard to find unpopular files

– BitTorrent (and decentralized tracker)
• distributed hash table: effectively each peer is a tracker
• peers have storage to share, connect them in a structured network
• map each file to a particular peer, easy to find any file if you know name
• run over UDP, ports negotiated 20

P2P Applications

vumanfredi@wesleyan.edu 21

Hash table
– central coordination
– stores (key, value) pairs

• key: ss number; value: human name
• key: content type; value: IP address

– hash key to efficiently determine location of (key, value) pair

Distributed Hash Table (DHT): invented in 2001
– no central coordination: distributed p2p database
– hash table where (key, value) pairs are distributed across devices

• need mechanisms to
– assign pairs to devices
– efficiently determine device location of pair
– cope with devices joining and leaving

22

H(key) → location

Each peer chooses random integer identifier in range [0,2m-1]
– each identifier represented by n bits

Require each key to be integer in same range
– to get integer keys, hash original key

• e.g., integer key = h(“Pink Floyd”)
• why called a distributed “hash” table

Peer → integer identifier in range [0, 2m-1]

H(filename) → integer key in range [0, 2m-1]

vumanfredi@wesleyan.edu 23

Assign (key, value) pair to peer with closest integer identifier
– assume closest is immediate successor of key

Example
– m = 4 implies integer identifiers are in range [0:24-1]

• peers: 1,3,4,5,8,10,12,15
– key = 14

• immediate successor peer is 15
– key = 15

• immediate successor peer is 1

vumanfredi@wesleyan.edu 24

1

3

4

5

8
10

12

15
Forms “overlay
network” over

Internet topology

Form a ring of peers
– use SHA-1 to hash node’s IP

address into m-bit identifier
– peers store pointers to predecessor

and successor peers on ring

Store keys on peers
– hash filename into m-bit key, k
– store file on successor(k)

• 1st peer whose identifier is ≥ k

File search: navigate from current
peer to peer storing key k

vumanfredi@wesleyan.edu 25

0001

0011

0100

0101

1000
1010

1100

1111

H(Pink Floyd) → 1110
Who’s responsible

for key 1110?
I am

O(N) messages on average to resolve
query, when there are N peers

1110

1110

1110
1110

1110

1110

vumanfredi@wesleyan.edu 26

Each peer keeps track of IP addresses of
– predecessor
– successor
– shortcuts

27vumanfredi@wesleyan.edu

0001

0011

0100

0101

1000
1010

1100

1111

H(Pink Floyd) → 1110
Who’s responsible

for key 1110?
I am

1000

1111

Shortcuts
– design so O(log N) neighbors and O(log N) messages in query
– How? Finger table

• kind of routing table, lets peer jump at least halfway to target

Finger table at peer with identifier k
– m entries in table, each pointing to different peer
– each entry i has 2 fields

• start = k + 2i (mod 2m)
• IP address of successor(start[i])

Usage
– if key between k and successor (k)

• successor(k) peer is holding info, search terminates
– else query finger table

• find entry whose start field is closest predecessor of key
28

How to handle?
– require each peer to know the IP address of its two successors
– each peer periodically pings its two successors to see if they are

still alive

1

3

4

5

8
10

12

15

Peer 5 abruptly leaves

What happens? Peer 4 detects
– makes 8 its immediate successor
– asks 8 who its immediate

successor is
– makes 8’s immediate successor

its second successor

Q: what if peer 13 wants to join?

vumanfredi@wesleyan.edu 29

Relies on consistent hashing or efficiency
– uniformly distribute keys and identifiers

• negligible collision probability
– peers can join and leave with minimal disruption to DHT

Steps
1. Choose random integer identifier in range [0,2m-1]
2. Use lookup function to determine identifier and ring location

– determine future successor
– determine predecessor from successor

3. Let successors and predecessors know that you joined

30vumanfredi@wesleyan.edu

Pros
– fault tolerant, scalable, decentralized, provable guarantees

Cons
– more complex to manage
– additional communication overhead to manage DHT

Protocols
– DHT is not just a data structure

• since distributed, need communication (managed by protocol)
– Chord, Pastry, Tapestry, Kademlia …
– https://en.wikipedia.org/wiki/Chord_(peer-to-peer)

• what we overviewed
– https://en.wikipedia.org/wiki/Kademlia

31vumanfredi@wesleyan.edu

