
Lecture 5: Application Layer
Overview and HTTP

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved.

1. Announcements
– homework 2 due Wed. by 11:59p
– virtual machines and networking

• may want to turn networking on/off if having issues (or restart)
• good way to check for internet (and dns) access: ping website

2. Application layer
– overview
– Web and HTTP

3. HTTP protocol
– requests, responses, error codes
– cookies

2vumanfredi@wesleyan.edu

Application Layer

vumanfredi@wesleyan.edu 3

Application software
– processes running different hosts, communicate via messages

Application architecture
– client-server vs. peer-to-peer vs. hybrid
– overlaid on network architecture

Internet

transport

application

physical
link

network

process

transport

application

physical
link

network

process
User Space

Operating
System

4vumanfredi@wesleyan.edu

Define
– types of messages exchanged

• e.g., request, response
– message syntax

• what fields are in messages
• how fields are delineated

– message semantics
• meaning of information in fields

– rules
• for when and how processes send

and respond to messages

Rely on transport layer
– to get messages from process on

one host to process on another host

Open protocols
– defined in RFCs
– allows for interoperability
– e.g., HTTP, SMTP

Proprietary protocols
– e.g., Skype

transport

physical
link
network

GET / HTTP/1.1

Provide specific services to application

5

Dictate what transport layer services application needs
TCP or UDP (or SSL/TCP or QUIC if you’re Google)?

Service App requirements
Reliable data transfer: does all
data need to be received?

Loss-tolerant? E.g. video?

Throughput: does data need to
be delivered quickly? Is app
sending lots of data?

Bandwidth sensitive? E.g., video
Elastic traffic? E.g., use as much/little
bandwidth as available

Timing: does data need to be
delivered at certain min rate?

Time-sensitive? E.g., voice, video need
low delay

Security: does data need to be
secured from eavesdroppers
and modification?

Encryption?
Data integrity?
Endpoint authentication?
Confidentiality?

6vumanfredi@wesleyan.edu

TCP service
– connection-oriented

• setup required between client and
server processes

– reliable transport
• messages delivered to destination

process without error and in-order
– congestion control

• sender reduces sending rate when
network is overloaded

– flow control
• sender reduces sending rate when

destination is overloaded
– does not provide

• timing, minimum throughput or
delay guarantee, security

UDP service
– unreliable data transfer

• best-effort service
between sender and
destination processes

– does not provide
• reliability
• flow control
• congestion control
• timing
• throughput guarantee
• security
• connection setup

Q: why bother? Why is
there a UDP?

7vumanfredi@wesleyan.edu

Application

File transfer
E-mail

Web documents
Real-time audio/video

Stored audio/video
Interactive games

Text messaging

Data loss

no loss
no loss
no loss

loss-tolerant

loss-tolerant
loss-tolerant

no loss

Throughput

elastic
elastic
elastic

audio: 5kbps-1Mbps
video:10kbps-5Mbps

same as above
few kbps up

elastic

Time sensitive

no
no
no

yes, 100’s msec

yes, few secs
yes, 100’s msec

yes and no

Q: other apps you can think of?

8vumanfredi@wesleyan.edu

Application

E-mail
Remote terminal access

Web
File transfer

Streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]

FTP [RFC 959]
HTTP (e.g., YouTube),

RTP [RFC 1889]
SIP, RTP, proprietary

(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP

TCP or UDP

TCP or UDP

Associated with each app is an app layer protocol: depending
on app requirements, runs over specific transport protocols

Q: where does security come into play?
9vumanfredi@wesleyan.edu

TCP & UDP
– no encryption: cleartext passwords sent

into socket traverse Internet in cleartext

TLS/SSL
– at app layer

• apps use SSL libraries, that “talk” to TCP
– provides encrypted TCP connection

• data integrity
• end-point authentication

TLS/SSL socket API
– cleartext passwords sent into socket

traverse Internet encrypted

transport

physical
link
network

GET / HTTP/1.1

transport

physical
link
network

GET / HTTP/1.1

agaLw3236Fgh
SSL

Q: Why does SSL run over TCP?
How is TLS/SSL related to OSI model? 10

Network Applications

vumanfredi@wesleyan.edu 11

HTTP
– HyperText Transfer Protocol

Client/server model
– client

• browser that requests,
receives, (using HTTP
protocol) and “displays”Web
objects

– server
• Web server sends (using

HTTP protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

12vumanfredi@wesleyan.edu

When you click on a link
1. client initiates TCP connection

– creates socket to server on port 80
2. server accepts TCP connection

from client
3. HTTP messages exchanged

between browser (HTTP client)
and Web server (HTTP server)

4. TCP connection closed

Two types of HTTP messages
– request, response

Stateless
– server maintains no information

about past client requests

Q: Why stateless?
– Stateful protocols are complex

• storage
– state must be maintained for

potentially many clients
• server/client crashes

– views of state may be
inconsistent, must be
reconciled

• workaround
– cookies

13vumanfredi@wesleyan.edu

When you click on a link
1. client initiates TCP connection

– creates socket to server on port 80
2. server accepts TCP connection

from client
3. HTTP messages exchanged

between browser (HTTP client)
and Web server (HTTP server)

4. TCP connection closed

Two types of HTTP messages
– request, response

1. Initiate TCP
connection

2. Request file

3. File received

time time

syn

syn/ack

HTTP req

HTTP resp

fin

fin/ack4. Connection
closed

14vumanfredi@wesleyan.edu

Web page consists of objects
– object can be HTML file, JPEG image,

Java applet, audio file,…
– typically includes base HTML-file and

several referenced objects

Each object is addressable by URL, e.g.,

www.someschool.edu/someDept/pic.jpg

host name path

2. pic.jpg
3. HWK.pdf

1. index.html

All 3 objects must be
requested from server in

order to fully load webpage

object

Q: How do we download multiple objects using HTTP?
15vumanfredi@wesleyan.edu

Non-persistent HTTP
– at most one object sent over

TCP connection
• connection then closed

– for each object, setup and use
separate TCP connection

• downloading multiple objects
requires multiple connections

– HTTP/1.0

Two ways to use HTTP requests to get
objects from web server

Persistent HTTP
– multiple objects can be sent

over single TCP connection
between client, server

– reuse same TCP connection
to download multiple objects

– HTTP/1.1: by default

Q: Which is faster? Which is better?

16vumanfredi@wesleyan.edu

Suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP
server (process) at
www.wesleyan.edu on
port 80

2. HTTP client sends HTTP
request message (containing

URL) into TCP connection
socket. Message indicates

client wants object
mathcs/index.html

1b. HTTP server at host
www.wesleyan.edu

waiting for TCP connection
at port 80 “accepts”

connection, notifying client

3. HTTP server receives request
message, forms response

message containing requested
object, and sends message

into its socket
time

www.wesleyan.edu/mathcs/index.html

17vumanfredi@wesleyan.edu

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for the 10
referenced jpeg objects

referred to in index.html

4. HTTP server closes TCP
connection.

time

18vumanfredi@wesleyan.edu

Round-trip-time (RTT)
– time for small packet to travel

from client to server and back

HTTP response time
– 1 RTT

• to initiate TCP connection
– 1 RTT

• for HTTP request and first
few bytes of HTTP response
to return

– file transmission time

Time to
transmit

file

Initiate TCP
connection

RTT

Request file

RTT

File
received

time time

Non-persistent HTTP response time is
2RTT+ file transmission time

19vumanfredi@wesleyan.edu

Delay and resource usage
– requires 2 RTTs per object
– OS must work and allocate host resources for each TCP

connection
– browsers often open parallel TCP connections to fetch

referenced objects

Q: Can we do better?

20vumanfredi@wesleyan.edu

Server leaves connection open after sending response
– subsequent HTTP messages between same client/server

• sent over open connection
– client sends requests

• as soon as it encounters a referenced object

Persistent without pipelining
• client issues new request only

when previous response has
been received

• 1 RTT for each referenced
object

Persistent with pipelining
• client sends requests as soon

as it encounters referenced
object

• as little as 1 RTT for all
referenced objects

• default in HTTP/1.1

21vumanfredi@wesleyan.edu

22

Without pipelining With pipelining

Initiate TCP
connection

RTT

Request
index.html

RTT

time time

Close
connection

RTT

Request
hwk.pdf

RTT

RTT

RTT

time time

Close
connection

RTT

Time to
transmit

file

Delay: 4RTT + 3DTrans Delay: 3RTT + 2DTrans

RTT

Request
pic.jpg

Initiate TCP
connection

RTT

Request
index.html

Request hwk.pdf
Request pic.jpg

23

Without pipelining With pipelining

Initiate TCP
connection

RTT

Request
file 1

RTT

time time

Close
connection

RTT

Request
file 2

RTT

Initiate TCP
connection

RTT

Request file 1

RTT

time time

Close
connection

Request file 2

RTT

Time to
transmit

file

Delay: 4RTT + 2DTrans Delay: 3RTT + 2DTrans

Q: Other things that you can do to
decrease delay?

A: Open multiple connections in
parallel to increase performance

HTTP Protocol

vumanfredi@wesleyan.edu 24

ASCII (human-readable format)

Request line
(GET, POST,

HEAD commands)

Header lines

Carriage return,
line feed at start
of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Mozilla/5.0\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Persistent
connection

25

Q: What info can server use to fingerprint you, without
even using cookies?

request
line

header
lines

body

method sp sp cr lfversionURL
cr lfvalueheader field name

valueheader field name

~~ ~~

entity body~~ ~~

cr lf

valueheader field name cr lf

cr lf

26vumanfredi@wesleyan.edu

POST method
– web page often includes form input
– input is uploaded to server in entity body

URL method
– uses GET method
– input is uploaded in URL field of request line:

www.somesite.com/animalsearch?monkeys&banana

27vumanfredi@wesleyan.edu

Status line
(protocol

status code
status phrase)

Header
lines

Data, e.g.,
requested

HTML file (may
be split across
multiple pkts

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

Use to determine
end of message

28vumanfredi@wesleyan.edu

Status code
– appears in 1st line in server-to-client response message.

Some sample codes
– 200 OK

• request succeeded, requested object later in this msg
– 301 Moved Permanently

• requested object moved, new location specified later in this msg
(Location:)

– 400 Bad Request
• request msg not understood by server

– 404 Not Found
• requested document not found on this server

– 500 Server error
– 505 HTTP Version Not Supported

29vumanfredi@wesleyan.edu

From https://medium.com/@hanilim/http-
codes-as-valentines-day-comics-

8c03c805faa0

30

1. Open tcp connection using netcat:

Opens TCP connection to port 80
(default HTTP server port) at

wesleyan.edu. Anything typed in will
be sent to port 80 at wesleyan.edu

nc wesleyan.edu 80

2. type in a GET HTTP request:

GET /mathcs/index.html HTTP/1.1
Host: wesleyan.edu

By typing this in (hit carriage
return twice), you send

this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

31vumanfredi@wesleyan.edu

HTTP Protocol

vumanfredi@wesleyan.edu 32

Many Web sites use cookies
– allow HTTP to store state across multiple interactions by user
– Q: why?

• distinguish different users
• authorization
• shopping cart when not signed in
• recommendations, preferences
• user session state (Web e-mail)

Components
1. cookie header line of HTTP response message
2. cookie header line in next HTTP request message
3. cookie file kept on user’s host, managed by user’s browser
4. back-end database at Web site

33vumanfredi@wesleyan.edu

Client Server

http response msg

http response msg

cookie file

one week later:

http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 http request msg Amazon server
creates ID

1678 for user create
entry

http response
set-cookie: 1678

ebay 8734
amazon 1678

http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734

amazon 1678

backend
database

34

Cookie stored locally,
included in subsequent

HTTP requests to server

For client
– privacy vulnerabilities

• cookies permit sites to learn a lot about you
• suppose cookie set but also signed into google

– track user behavior
– ad tracking (third-party cookies)

• cookie set by website different than one you are on

For server
– users can easily delete cookies
– storage needed on server too

For adversary
– cookie injection attacks

• man-in-middle HTTP connection
– other attacks 35vumanfredi@wesleyan.edu

Firefox (Mac OS)
~/Library/Application\Support//Firefox/Profiles/h1svqqk3.default/cookies.sqlite

Chrome (Mac OS)
~/Library/Application\ Support/Google/Chrome/Safe\ Browsing\ Cookies

Use sqlite to parse file.
– may want to make a copy of file in your home dir to open

Is your browser safe from tracking?
– https://panopticlick.eff.org/

36vumanfredi@wesleyan.edu

