
Lecture 4: Sockets and system
programming

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University and some material

from Computer Networks by Tannenbaum and Wetherall.

2

1. Announcements
– homework 1 due today, homework 2 posted

• tictactoe.py code for homework2 will be posted once homework1 turned in

2. Network applications

3. Network programming
– TCP sockets
– UDP sockets

4. Network tools
– netstat: what connections do you have open
– netcat: incredibly flexible and useful network tool
– Wireshark: looking at real traffic

vumanfredi@wesleyan.edu

Network Applications

vumanfredi@wesleyan.edu

4

Write programs that
– run on (different) end systems
– communicate over network
– e.g., web server software

communicates with browser
software

Q: Do we need to write software
for network-core devices?

– No, network-core devices do not
run user applications

– applications on end systems
allows for rapid app
development, propagation

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

vumanfredi@wesleyan.edu

5

Server
– always-on, dedicated host

• e.g., web server
– permanent IP address
– data centers for scaling

Clients
– communicate with server
– may be intermittently connected
– may have dynamic IP addresses
– do not communicate directly with

other clients

Client host requests and receives service
from always on server host

Resp

Client and server devices
are not equivalent

vumanfredi@wesleyan.edu

Req

6

End systems directly communicate
– self scalability – new peers bring

new service capacity, as well as
new service demands

– minimal/no use of always-on server
– E.g., Skype, BitTorrent

Complex management
– peers are intermittently connected

and change IP addresses
– Q: why is this complex?

Peers request service from other peers, provide
service in return to other peers

Req Resp

All devices are equivalent: a
client can also be a server

vumanfredi@wesleyan.edu

7

Process
– program in execution, running

within a host

Processes within same host
– communicate by using inter-

process communication
(defined by OS)

Processes on different hosts
– communicate by exchanging

messages

Clients, servers
– client process

• process that initiates
communication

– server process
• process that waits to be

contacted

Aside
– applications with P2P

architectures also have
client & server processes

vumanfredi@wesleyan.edu

Our goal learn how to build client/server
applications that use sockets to communicate

Network Programming

vumanfredi@wesleyan.edu

9

Socket
– interface that transport layer provides to apps to access network
– analogous to door

• sending process shoves msg out door, relies on transport infrastructure on
other side of door to deliver msg to socket at receiving process

Client and server processes
– send/receive messages to/from their respective sockets

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

vumanfredi@wesleyan.edu

User Space

Operating
System

10

import socket
– gives access to BSD (Berkeley Socket Distribution) socket interface

• POSIX sockets <-> Berkeley sockets <-> BSD sockets
• available on pretty much every modern operating system

Resources
– https://docs.python.org/3/howto/sockets.html
– https://docs.python.org/3/library/socket.html

Socket exceptions
– https://docs.python.org/3/library/socket.html#exceptions

You must read/write bytes from/to a socket
– encode string to bytes: string.encode(‘utf-8’)
– decode string from bytes: string.decode(‘utf-8’)

11

Address families
– AF_UNIX

• local, inter-process communication
– AF_INET4

• Internet protocol v4
– AF_INET6

• Internet v6

Socket types
– SOCK_DGRAM

• UDP packets
– SOCK_STREAM

• TCP packets
– SOCK_RAW

• don’t let OS process transport
header on packet, have OS
send/receive raw packet

To send HTTP message to
wesleyan.edu web server

– IP address: 129.133.7.68
– port number: 80

Part of process identifier:
e.g., <ip address, port>

Different types of service
offered by different

socket types

12

TCP (Transmission Control Protocol)
– connection-oriented

• before data exchange takes place, a
logical connection is first established

– reliable, byte stream-oriented
• delivery is in-order, error- and loss-free,

no duplication

UDP (User Datagram Protocol)
– connection-less

• data is sent directly in a best-effort way

– unreliable
• data can arrive out-of-order, be lost, corrupted,

duplicated

vumanfredi@wesleyan.edu

App reads in-order,
error-free bytes from

socket

App reads whatever is
currently at socket, whether
out-of-order, missing etc.

Any reliability must be
implemented by app

13

socket.send(bytes) - TCP
– Send data to the socket. The socket must be connected to a remote

socket. Returns the number of bytes sent. Applications are responsible for
checking that all data has been sent; if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data

socket.sendall(bytes) - TCP
– Send data to the socket. The socket must be connected to a remote

socket. Unlike send(), this method continues to send data from bytes until
either all data has been sent or an error occurs. None is returned on
success. On error, an exception is raised, and there is no way to determine
how much data, if any, was successfully sent.

socket.sendto(bytes, address) - UDP
– Send data to the socket. The socket should not be connected to a remote

socket, since the destination socket is specified by address.

vumanfredi@wesleyan.edu

14

Socket.recv(num_bytes)
– Receive data from the socket. The return value is a bytes object

representing the data received. The maximum amount of data to be
received at once is specified by bufsize.

vumanfredi@wesleyan.edu

15

socket.sendall()
– generally preferable to use to eliminate partial send

socket.recv()
– app needs way to know whether it has read everything from socket

• “end” flag
• a priori knowledge of number of bytes to read
• …

– typically put recv() in while loop
• keep reading until nothing left to read from socket

vumanfredi@wesleyan.edu

16

Big endian
– big end first: largest byte (containing most significant bit) first

Little endian
– little end first: smallest byte (containing least significant bit) first

Network byte order
– big endian

UTF-8 byte order
– stays the same regardless of endian-ness of machine
– i.e., you shouldn’t need to worry about byte order

vumanfredi@wesleyan.edu

Network Programming

vumanfredi@wesleyan.edu

18

Client must first contact server
before sending data

– server process must first be
running: creates socket (door)
that welcomes client’s contact

How?
– create TCP socket

• specify server IP addr, port #
• “handshake” occurs

– TCP Syn/Synack/Ack
exchanged

– if succeeds, connection
established, can send data

Application viewpoint
TCP provides reliable, in-order
byte-stream transfer (“pipe”)

between client and server

vumanfredi@wesleyan.edu

When contacted by client
– server TCP creates new

socket for server process to
communicate with that
particular client

• allows server to talk with
multiple clients

• source port numbers used
to distinguish clients

19vumanfredi@wesleyan.edu

Internet
transport

application

physical
link

network

process

IP1, Port1

IP2, Port2

x

Source 1

Source 2

IP1,Port1,
IP3,Port3

IP3, Port3IP2,Port2,
IP3,Port3

IP1,Port1,
IP3,Port3

Establish connection, read/write
bytestream, only packets with matching
4-tuple (src ip, src port, dst ip, dst port)

are pushed to application

20

Wait for incoming
connection request
connectionSocket =

serverSocket.accept()

Create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_STREAM)

create socket,
connect to serverIP, port=x

clientSocket = socket()

Send request using
clientSocketread request from

connectionSocket
write reply to

connectionSocket

TCP
connection setup

close
connectionSocket

Read reply from
clientSocket

Close clientSocket

Server running on serverIP Client running on clientIP

vumanfredi@wesleyan.edu

21

1. Client
– reads a line of characters (data) from its keyboard and sends data

to server via socket

2. Server
– receives data from socket and converts characters to uppercase

3. Server
– sends modified data to client

4. Client
– receives modified data and displays line on its screen

vumanfredi@wesleyan.edu

22

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.

encode())
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new

socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming

socket)

vumanfredi@wesleyan.edu

23

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port

12000

No need to attach
server name, port

vumanfredi@wesleyan.edu

24

Look at code and run:
available on class schedule

vumanfredi@wesleyan.edu

Network Programming

vumanfredi@wesleyan.edu

26vumanfredi@wesleyan.edu

Internet
transport

application

physical
link

network

process

IP1, Port1

IP2, Port2

Source 1

Source 2

IP1,Port1,
IP3,Port3

IP3, Port3IP2,Port2,
IP3,Port3

IP1,Port1,
IP3,Port3

Read/write packets, only packets with
matching 2-tuple (dst ip and dst port)

are pushed to application
IP2,Port2,
IP3,Port3

27

Close clientSocket

Read datagram from clientSocket

Create socket, bind it to port = y:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with
serverIP and port=x; send
datagram via clientSocket

Create socket, bind it to port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

Read datagram from
serverSocket

Write reply to serverSocket
specifying clientIP, port = y

Server running on serverIP Client running on clientIP

vumanfredi@wesleyan.edu

28

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s

address (client IP and port)

send upper case string
back to this client

vumanfredi@wesleyan.edu

29vumanfredi@wesleyan.edu

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket

library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Network Programming

vumanfredi@wesleyan.edu

31

What ports are open?
– netstat | less

Display routing table info
– netstat -r

On Linux only
– TCP connections

• ss –ta
– UDP connections

• ss -ua
– Unix connections

• ss -xa

vumanfredi@wesleyan.edu

32

netstat | less

TCP
connections

UDP
connections

IP address Port/Protocol
Protocol

state

PortIP address

vumanfredi@wesleyan

33

ss (socket statistics, works in linux only)

TCP connections

UDP connections

Unix connections

vumanfredi@wesleyan

34

Be a TCP server: listen for connections on port 51234
– nc -l 51234

Be a TCP client: connect to port 51234 on locahost
– nc localhost 51234
– type a string and press enter: you should see it show up at server
– type a string at server and press enter: you should see it at client

Look at connections you created
– netstat | grep 51234

Connect to www.wesleyan.edu
– nc -u www.wesleyan.edu 80
– once connected, enter

GET / HTTP/1.1
Host: www.wesleyan.edu # followed by two enters

vumanfredi@wesleyan.edu

35

Create a chat app with nc:

nc -l 5000 on one machine with ip addr x
nc x 5000 on another machine

vumanfredi@wesleyan.edu

Packet sniffing

vumanfredi@wesleyan

37

Packet sniffer
– passively observes messages transmitted and received on a

particular network interface by processes running on your computer
– often requires root privileges to run

Popular packet sniffers
– Wireshark (also command-line version, tshark)
– tcpdump (Unix) and WinDump (Windows)
– use command line sniffers to analyze packet traces with bash script

vumanfredi@wesleyan

38

Transport (TCP/UDP)
Network (IP)

Link (Ethernet)
Physical

application
(www browser,

email client)

application

OS

packet
capture
(pcap)

packet
analyzer

copy of all
Ethernet
frames

sent/received

vumanfredi@wesleyan

39

Install
– https://www.wireshark.org/download.html

Run
– type Wireshark in terminal, or double-click icon
– Wireshark display may look different for Linux vs. Mac vs. Windows

Choose an
interface to

capture
traffic on vumanfredi@wesleyan

40

Display Filter
ProtocolsSource IP Dest IP Protocol State

Captured
packets

Packet
details

Packet contents in hex
and ascii: can match

bytes to header

2 hex digits = 1 byte= 1 ascii char

If you click on pkt or header field,
will highlight hex/ascii fields and

vice versa vumanfredi@wesleyan

41

Layers
Physical
Link
Network
Transport
Application

vumanfredi@wesleyan

42

Only TCP
traffic See only TCP

TLS protocol runs
over TCP

vumanfredi@wesleyan

43

Run traceroute and see what
traffic is generated

vumanfredi@wesleyan.edu

44

Run ping and see what traffic
is generated

vumanfredi@wesleyan.edu

