Lecture 2: Internet Structure

COMP 332, Spring 2018 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach $7^{\text {th }}$ edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University and some material from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

- help sessions now Tu (Exley 638) as well as Mo (Exley 618)
- please do the reading!
- to run Python 3: type python3
- homework 1 posted: may want to wait for lecture 3 for problem 1

2. Recap

- direct vs indirect connectivity
- Internet protocol stack

3. Internet organization

- edge
- how you connect to Internet
- core
- how your packets get to their destination
- circuit-switching vs. packet-switching
- structure
- network of networks: internetwork

Network CONNECTIVITY

Connectivity

Direct links

- point-to-point

point-to-point network

Indirect connectivity

- multiple access

multiple access network
Internetwork

Internet

PROTOCOL STACK

Internet protocol stack

Internet protocol stack

Layer	Service provided to upper layer	Protocols	Unit of information
5 Application	- Support network applications	FTP, DNS, SMTP, HTTP	Message 1 message may be split into multiple segments
4 Transport	- Deliver messages to app endpoints - Flow control - Reliability	TCP (reliable) UDP (best-effort)	Segment (TCP) Datagram (UDP) 1 segment may be split into multiple packets
3 Network	- Route segments from source to destination host	IP (best-effort) Routing protocols	Packet (TCP) Datagram (UDP)
2 Link	- Move packet over link from one host to next host	Ethernet, 802.11	Frame MTU is 1500 bytes
1 Physical	- Move individual bits in frame from one host to next - "bits on wire"	Ethernet phy 802.11 phy Bluetooth phy DSL	Bit

Internet protocol stack

Where to place functionality in Internet?

- Option 1:
- inside network (switches/routers)
- Option 2:
- at edges (hosts)

Illustrates "end-end" principle

- some network functionality can only be correctly implemented at end-hosts
- e.g., file transfer
- should each link check or end hosts check?
- what if a link on path fails?

Encapsulation/Decapsulation

Fragmentation/Assembly

Why fragment? Max size of Ethernet frame is specified to be 1522 bytes

Now some additional book-keeping to keep track of which segments belong to which message

Multiplexing/Demultiplexing

Why multiplex? Many processes sending network traffic simultaneously on host, many hosts sharing network

Now some additional book-keeping to keep track of which segments belong to which process on host

Internet COMPONENTS

How is Internet organized physically?

A network of networks: internetwork

- every device implements IP (Internet Protocol) and has IP address

Billions of connected devices

- run network apps

Communication links

- fiber, copper, radio, satellite - $\begin{aligned} & \text { wired } \\ & \text { links }\end{aligned}$
- transmission rate: bandwidth

Routers (and switches)

- forward packets (and frames)

Map of the Internet

By The Opte Project [CC BY 2.5
(http://creativecommons.org/licenses/by/2.5)], via Wikimedia Commons

Who is connected to whom?

Nodes

- IP addresses of devices

Edges

- lengths are delay between 2 devices

How is Internet structured?

Network edge

- hosts: clients and servers
- servers often in data centers

Access networks, physical media

- wired, wireless communication links

Network core

- interconnected routers
- network of networks

Protocols

- control message sending, receiving

ISP: Internet Service Provider

Internet provides services

Services to applications

- E.g., web, VolP, email, games, ecommerce, social nets, ...

Programming interface to apps

- hooks
- for sending and receiving app programs to connect to Internet
- service options
- analogous to postal service

Internet EDGE

How do you connect to Internet?

Hosts connect to edge router

- access network/ISP

Access networks

- residential
- DSL (telephone), cable,
- institutional
- school, company
- mobile

Issues

- bandwidth (bps) of access network?
- shared or dedicated?

Access network: home network

Access network: enterprise (Ethernet)

Typically used in companies, universities, etc.

- $10 \mathrm{Mbps}, 100 \mathrm{Mbps}, 1 \mathrm{Gbps}, 10 \mathrm{Gbps}$ transmission rates
- today, end systems typically connect into Ethernet switch

Access network: wireless

Shared wireless access network

- connects end system to router via base station (aka "access point")

Wireless LANs

- within building (100 ft.)
- 802.11b/g/n (WiFi):
- 11, 54, 450 Mbps

Wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- 3G, 4G: LTE

Host sends packets of data

1. Given application message

- breaks into packets
- smaller chunks of length L bits

2. Transmit packets into access network

- at transmission rate R
- aka link capacity
- aka link bandwidth

$$
\begin{gathered}
\text { Packet transmission } \\
\text { delay }
\end{gathered}=\frac{\text { Time to transmit } L \text {-bit }}{\text { packet into link }}=\frac{L \text { (bits) }}{R(\text { bits } / \mathrm{sec})}
$$

Internet CORE

How to move data through Internet core?

Internet core

- mesh of interconnected routers

Option 1: Packet-switching

- on-demand resource allocation
- best effort service
- good bandwidth use

Option 2: Circuit-switching

- reserved resources
- guaranteed service
- may waste bandwidth

Let's see why packet-switching is used in core

Packet-switching: store-and-forward

1. Hosts break app-layer messages into packets

Packet-switching: store-and-forward

1. Hosts break app-layer messages into packets
2. Store-and-forward: entire packet must arrive at router before it can be transmitted on next link

3. Time to transmit (push out) L-bit packet into R bps link:
L / R seconds

4. L/R seconds

End-end transmission delay $=2 L / R$ (assuming zero propagation delay)

Packet-switching: queueing delay, loss

If link arrival rate (in bits) > transmission rate link for some time

- packets will queue, wait to be transmitted on link
- packets can be dropped (lost) if memory (buffer) fills up

Packet-switching: multiplexing users

Multiplexing

- share links and network resources among multiple users

Statistical Multiplexing

- time-division, but on demand rather than fixed (no waste)
- reschedule link on a per-packet basis
- packets from different sources interleaved on link
- buffer packets that are contending for link
- packet queue may be processed FIFO, but not necessarily
- buffer overflow, causing packet drop (loss), is called congestion

Packet-switching: 2 key functions of Internet core

How does Internet router determine outgoing link for packet?

- uses destination IP address in packet

1. Routing: determines src-dst route taken by packets, used to set forwarding table
2. Forwarding: move pkts from router's input to appropriate

Forwarding table: maps portion of dst IPs to outbound links

Alternative core: circuit switching

End-end resources allocated

- reserved for "call" between source \& dest

Dedicated resources

- no sharing
- circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)

Commonly used in traditional telephone networks

Each link has four

No store-and-forward since circuit reserved in advance: already know where to forward data next

Q: what happens if there is a lull in conversation?

Circuit switching: multiplexing users

Frequency Division Multiplexing

Time Division Multiplexing

time
4 users \square

Packet switching versus circuit switching

N users

- each user is active 10% of time
- 100 Kbps when active

How many users can be supported?

Circuit switching

- 1 Mbps / 10 = 100 Kbps
- $\mathrm{N}=10$ users

Packet switching

- N = 35 users
- prob > 10 users active at same time is < . 0004

Q: how did we get value 0.0004 ?
Q: what happens if >35 users ?

Packet switching allows more users to use network!

Binomial random variable (homework)

Suppose we do n independent experiments, each of which succeeds with probability p and fails with probability 1-p
$X=R . V$. indicating \# of successes that occur in n trials

Independent experiments: knowledge about one experiment occurring does not affect probability of other experiment occurring: e.g., coin toss.

$$
\begin{gathered}
P(A \text { and } B)=P(A) \times P(B) \\
P(A \text { or } B)=P(A)+P(B)
\end{gathered}
$$

$$
\begin{gathered}
P(X=4 \text { and } X=5)=P(X=4) \times P(X=5) \\
P(X=4 \text { or } X=5)=P(X=4)+P(X=5)
\end{gathered}
$$

Is packet switching always better?

Great for bursty data

- resource sharing
- simpler, no call setup

Excessive congestion possible

- packet delay and loss
- protocols needed for reliable data transfer, congestion control

How to provide circuit-like behavior?

- bandwidth guarantees needed for audio/video apps
- still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

