
Lecture 12: Transport Layer
TCP again

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 5 extension until Thursday at 11:59p

2. TCP
– seq #s and ack #s
– timeouts
– reliable data transport
– connection management

3. Midterm
– covers through whatever we get through today
– overview of exam format

2

TCP

vumanfredi@wesleyan.edu 3

Cumulative ACKs (but different than in Go-Back-N)
– ACKs everything up to sequence number received
– ACKs what receiver expects next, not last packet received
– Only 1 retransmission timer (for first pkt in window

• Sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

4

Initial Sequence
Number (ISN)

Sent +
ACKed

Sent + not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

send_base
= ISN + k next_seq_num

k bytes

User types ‘C’

Host ACKs receipt
of echoed ‘C’

Host ACKs receipt of ‘C’,
echoes back ‘C’
(’C’ is 1 byte long)

Simple nc scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

vumanfredi@wesleyan.edu 5

ISN: 42 ISN: 78

Sequence numbers are synchronized during connection set-up

6
What are seq and ack #s in next

segment from receiver?

Host 2Host 1

Convention: SYN
and FIN take 1
byte of seq #

space

Handshake:
Synchronize

ISNs

Data
exchange

Max length of IP packet in bytes
– MTU: Maximum Transmission Unit
– 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes
– MSS: Maximum Segment Size
– MSS = MTU – IP hdr – TCP hdr

• TCP header >= 20bytes

7

IP hdrTCP data TCP hdr

TCP segment = IP data

IP pkt

TCP segment sent when
• full: meets MSS
• not full: timeout

TCP

vumanfredi@wesleyan.edu 8

Q: how to set TCP timeout value?

Longer than RTT (ideally proportional)
– but RTT varies ….

Too short
– premature timeout
– unnecessary retransmissions

Too long
– slow reaction to segment loss

vumanfredi@wesleyan.edu 9

SampleRTT
– time from segment transmission to ACK reception
– ignore retransmissions

• since problems associating retransmitted ACK with right pkt
• will vary: use average of several measurements

10

EstimatedRTT = (1-a)*EstimatedRTT + a*SampleRTT

• exponential weighted moving average
• influence of past sample decreases exponentially fast
• typical value: a = 0.125

Timeout interval should be ≥ EstimatedRTT
– because of variation of RTT values
– average several recent measurements, not just current SampleRTT
– how big should margin of error be? 11

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

R
TT

 (m
ill

is
ec

on
ds

)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time
(seconds)

Timeout interval should be ≥ EstimatedRTT
– because of variation of RTT values
– large variation in EstimatedRTT⇒ larger safety margin

Estimate SampleRTT deviation from EstimatedRTT

12

DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

“safety margin”

If timeout occurs: timeout interval is doubled to prevent
premature timeout for subsequent segments

TCP

vumanfredi@wesleyan.edu 13

TCP creates rdt service on top of IP’s unreliable service
– pipelined segments
– cumulative acks
– single retransmission timer

Retransmissions triggered by
– timeout events
– duplicate ACKs

Let’s initially consider simplified TCP sender
– ignore duplicate acks
– ignore flow control, congestion control

vumanfredi@wesleyan.edu 14

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

15

Seq # is byte-stream # of first
data byte in segment. Timer is
for oldest unacked segment

Retransmit first segment in
window, restart timer

If acks previously unacked segments,
update what is known to be ACKed,
start timer if still unacked segments

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

16

Start timer for
oldest

unacked
segment

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

vumanfredi@wesleyan.edu 17

Time-out period often relatively long
– long delay before resending lost packet

Duplicate ACKs
– indicate isolated loss (rather than congestion causing many losses)

• sender often sends many segments back-to-back
• if segment is lost, likely many duplicate ACKs
• ACKs being received indicates some packets received at destination

since ACK sent for every packet: so not congestion

TCP fast retransmit
– if sender receives 3 ACKs for same data (triple duplicate ACKs)

• resend unacked segment with smallest seq #
– Why 3?

• pkts may just have been reordered otherwise
• likely that unacked segment lost, so don’t wait for timeout 18

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100
tim

eo
ut

ACK=100

ACK=100
ACK=100

1-19

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

tim
eo

ut

send_base = 92

Restart timer,
send_base = 100

Fast retransmit

TCP

vumanfredi@wesleyan.edu 20

Before exchanging data, sender/receiver handshake
– establish connection and connection parameters

• each knowing the other willing to establish connection
– tear down connection when done

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

vumanfredi@wesleyan.edu 21

sock = sock.connect((host, port)) conn, addr = server_sock.accept()

Q: will 2-way handshake
always work in network?

– variable delays
– retransmitted messages

• e.g. req_conn(x)) due to
message loss

– message reordering
– can’t see other side

22vumanfredi@wesleyan.edu

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

23vumanfredi@wesleyan.edu

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN
server state

LISTEN

vumanfredi@wesleyan.edu 24

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

SYN(seq=x)

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

vumanfredi@wesleyan.edu 25

sock = sock.connect((host, port))

conn, addr = server_sock.accept()

netstat -ta to see
state of TCP
connections

26vumanfredi@wesleyan.edu

Client, server close connection: each sends TCP segment with FIN bit = 1
– respond to received FIN with ACK (ACK can be combined with own FIN)

27

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Midterm

vumanfredi@wesleyan.edu 29

In class on Wednesday Mar. 28
– closed book, closed notes
– covers material in lectures 1 to 12

Still under development but …

No probability questions

Questions for which you need only provide short answers
– E.g.,

• what is the difference between a recursive vs. iterated query in the DNS?
• how are ports numbers used by UDP to demultiplex incoming segments? 

Question on reliable Data Transfer
– Hint

• Given channel characteristics design a protocol
• be able to design a reliable data transfer protocol like the Stop-and-wait

protocol, know your timeline diagrams

+ 2 other longer questions

