Lecture 2: Internet Structure

COMP 332, Fall 2018 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University and some material from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

- help sessions Mo and Tu, from 7-9p in Exley 638
- please do reading! Textbook was backordered but is now in bookstore
- homework 1 posted, due Wed. Sept. 12 by 11:59p

2. Building a network

- protocols
- layering
- key services

3. Internet organization

- edge
 - how you connect to Internet
- core
 - how your packets get to their destination
 - circuit-switching vs. packet-switching

Building a Network PROTOCOLS

vumanfredi@wesleyan.edu

Many, many things happening in a network

Networks are complex, with many pieces

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software
- diversity components

Questions: How can we possible organize and manage a network?

Some approaches: standards, protocols, and layering

Standards

If computers comply to same standards

 can interoperate even if computers are of different types or connected to different types of networks

Standards organizations

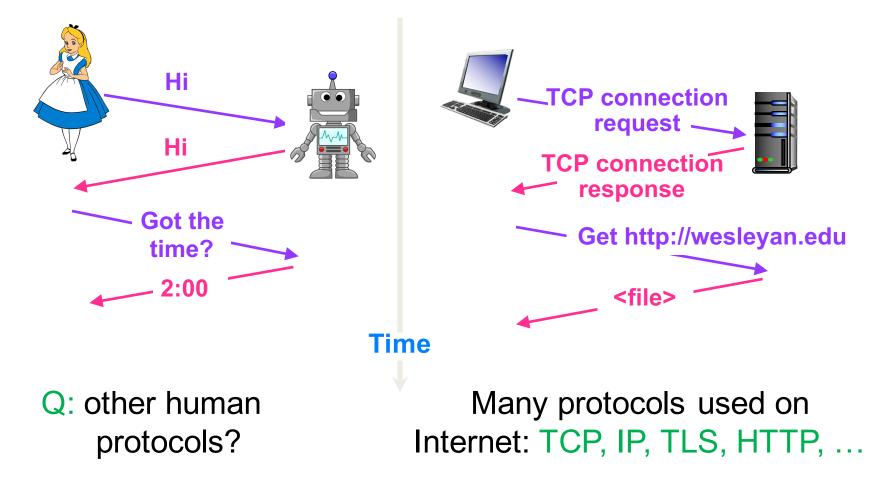
- Europe
 - ITU-T (formerly CCITT), e.g. publications X.25, V.24, etc.
 - X-series define how to connect a host to PSDN (Data)
 - V-series define how to connect a host to PSTN (Telephone)
 - I-series define how to connect a host to ISDN (Integrated)
 - ISO, developed OSI architecture
- US: IETF, EIA, IEEE, ANSI, NIST, ...
 - IETF RFCs define Internet standards for non-proprietary protocols
 - IEEE 802 define standards for links, e.g. Ethernet, WiFi

How do devices decide what to send and when?

Protocols define format, type, order of messages sent and received among network entities, and actions taken on message transmission, receipt

Human protocols

- "What's the time?"
- "I have a question"
- introductions

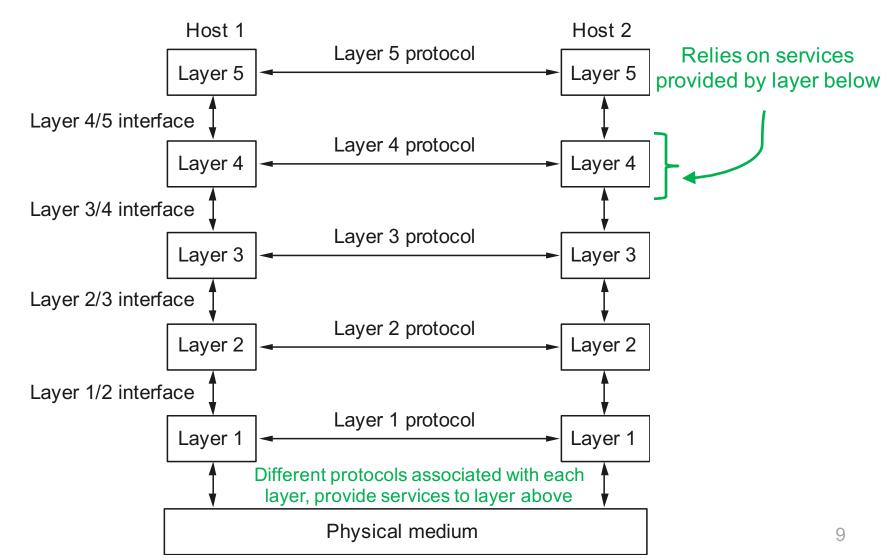

Network protocols

- machines rather than humans
- all communication activity in Internet governed by protocols

- ... specific messages sent
- ... actions taken when messages received, or other events

Protocol example

A human protocol and a computer network protocol:



Building a Network LAYERING

vumanfredi@wesleyan.edu

Layered network architecture

Each layer of stack has certain protocols associated with it. Different protocols provide different services

Why layering?

Pros

- identifies and captures how parts of system relate
- information hiding
 - hide info in one part of system from another
 - higher layer shielded from how lower layer implemented
- modularity
 - easy to change implementation of service provided by layer
 - as long as layer still provides same services to higher layer, higher layers can stay unchanged

Cons

- duplicate functionality
 - higher layer may duplicate functionality in lower layer
 - e.g., error checking; link by link, end to end
- one layer may need info from another layer
- no cross-layer optimization

7-Layer ISO/OSI Model

application: user interface

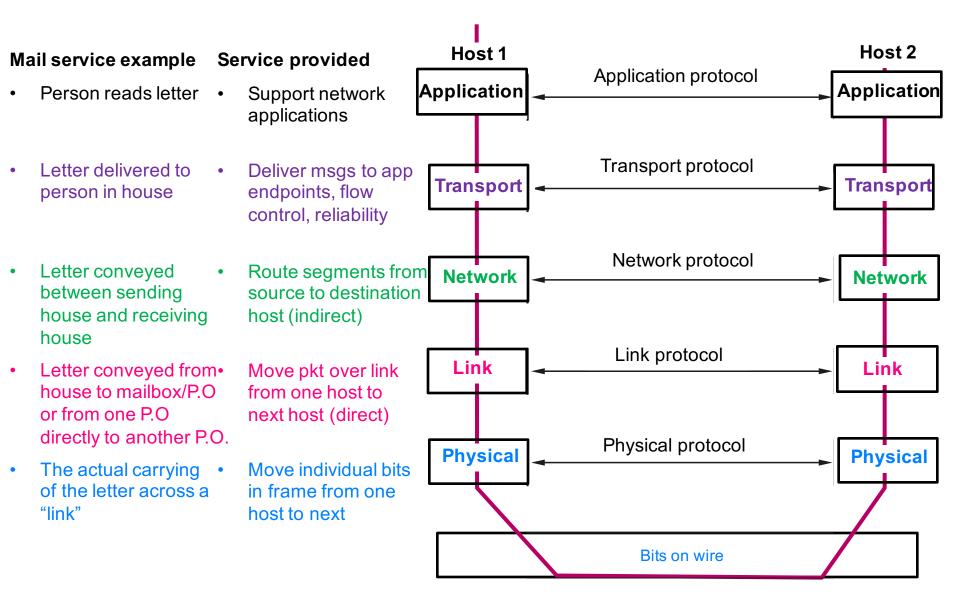
presentation:

allow applications to interpret meaning of data

e.g., encryption, compression, machine-specific conventions

session: synchronization, check-pointing, recovery of data exchange

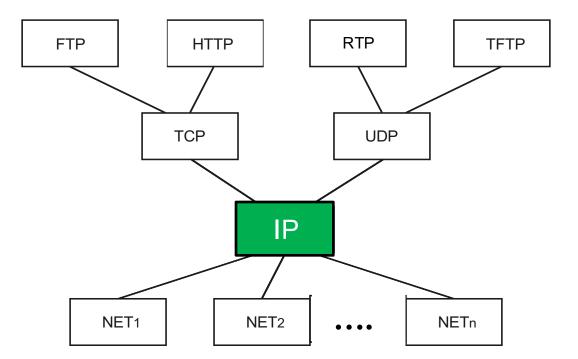
Internet protocol stack is "missing" these layers. These services, if needed, must be implemented in application. Needed?


transport: multiplexing/demultiplexing, fragmentation/reassembly, end-toend flow, congestion and error control

network: addressing and routing

data link: link flow and error control

physical: physical and electrical interfaces (normally 100% hardware)


5-layer Internet protocol stack

5-layer Internet protocol stack

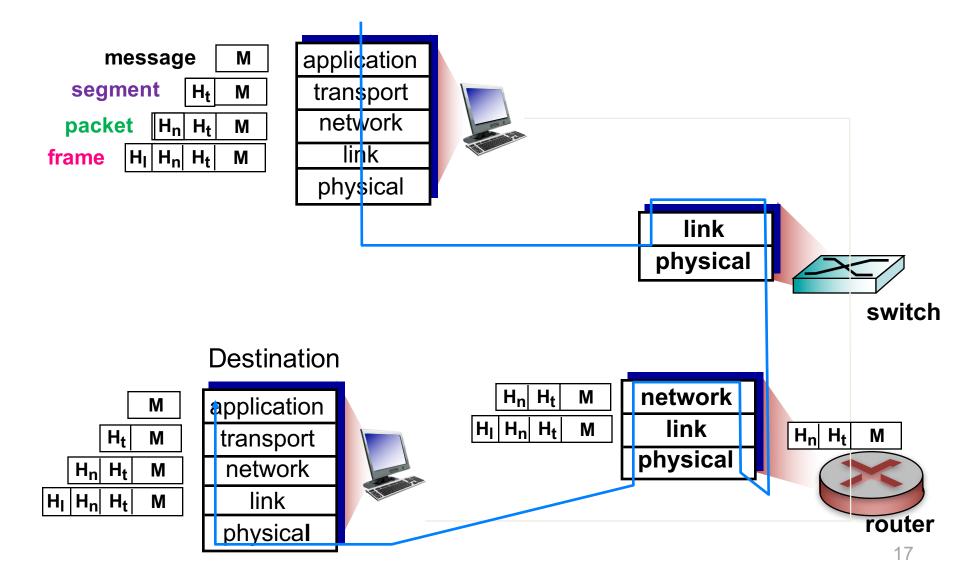
	Layer	Service provided to upper layer	Protocols	Unit of information
5	Application	 Support network applications 	FTP, DNS, SMTP, HTTP	Message 1 message may be split into multiple segments
4	Transport	 Deliver messages to app endpoints Flow control Reliability 	TCP (reliable) UDP (best-effort)	Segment (TCP) Datagram (UDP) 1 segment may be split into multiple packets
3	Network	 Route segments from source to destination host 	IP (best-effort) Routing protocols	Packet (TCP) Datagram (UDP)
2	Link	 Move packet over link from one host to next host 	Ethernet, 802.11	Frame MTU is 1500 bytes
1	Physical	 Move individual bits in frame from one host to next "bits on wire" 	Ethernet phy 802.11 phy Bluetooth phy DSL	Bit 13

Protocol graph for Internet

IP is called narrow waist of Internet: Allows interconnectivity of many different kinds of networks as long as they use IP

Looking at protocol stack in Wireshark

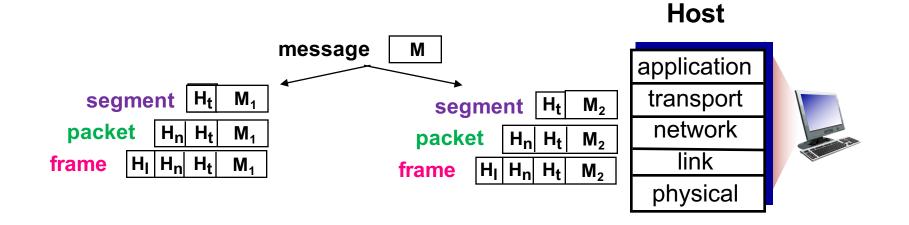
	8/ 8.5/8350	JuniperN_1e:18:01	Broadcast	AKP 64			
	88 8.622793	129.133.182.236	216.58.219.229	TCP 54			
	89 8.639661	216.58.219.229	129.133.182.236	ТСР 66			
Layers	90 9.602437	JuniperN_1e:18:01	Broadcast	ARP 64			
	91 9.848778	129.133.182.236	198.105.244.104	TCP 78			
Physical —							
i ilysical	→ Frame 77: 166 by	tes on wire (1328 bits)	, 166 bytes capture	d (1328 bits) on inter			
Link Ethernet II, Src: JuniperN_1e:18:01 (3c:8a:b0:1e:18:01), Dst: Apple_c5:b							
							Network User Datagram Protocol, Src Port: 53 (53), Dst Port: 44065 (44065)
Domain Name System (response)							
Transport -	Transport Transport						
Application	0000 78 31 c1 c5 b	4 9a 3c 8a b0 1e 18 0	1 08 00 45 00 x1.	<e.< th=""></e.<>			
Application		0 00 3e 11 a0 72 81 8		>r			
	0020 b2 35 00 35 a	c 21 00 84 ee d2 24 f		5. !\$			
	0030 00 03 00 00 0	0 00 03 69 6e 74 03 6		i nt.nyt.c			
	0040 6f 6d 00 00 0	1 00 01 c0 0c 00 05 0	0 01 00 00 01 om.				
	0050 ad 00 22 08 7	7 69 6c 64 63 61 72 6	4 07 6e 79 74 🛛''.	wild card.nyt			
	0060 69 6d 65 73 0	3 63 6f 6d 07 65 64 6	7 65 6b 65 79 imes	s.com .edgekey			
wireshark_pcapng_en0_20160824155218_HN8Ru3 Packets: 48516 · Display							


We'll talk in depth about Wireshark and how to use next week

Building a Network KEY SERVICES

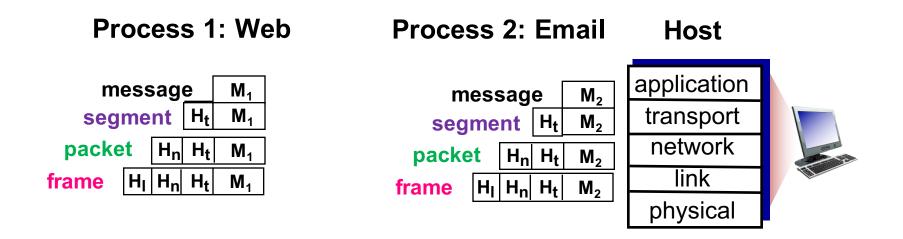
vumanfredi@wesleyan.edu

Encapsulation/Decapsulation


Headers must be added/removed from data unit at each layer

Fragmentation/Assembly

If data unit too large for layer below, must fragment/assemble


Why fragment? Max size of Ethernet frame is specified to be 1522 bytes

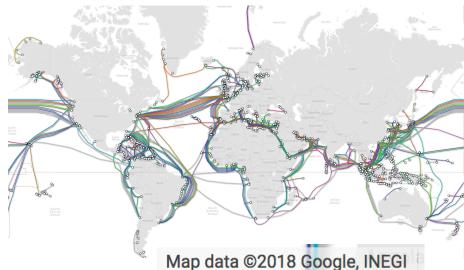
Need additional book-keeping to keep track of which **segments** belong to which **message**

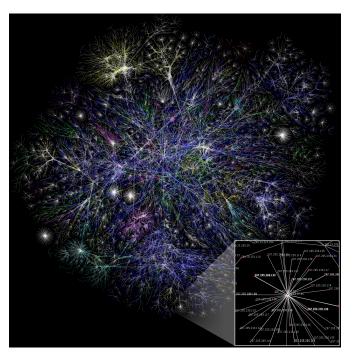
Multiplexing/Demultiplexing

Many processes sending network traffic simultaneously on host, many hosts sharing network

Need additional book-keeping to keep track of which **segments** belong to which **process** on host

Internet Organization OVERVIEW


vumanfredi@wesleyan.edu


The story of the Internet

Not so long ago, a new kind of communication network was needed ...

... one that could withstand a nuclear war

... and in 1969 the Internet was born

By The Opte Project [CC BY 2.5 (http://creativecommons.org/licenses/by/2.5)], via Wikimedia Commons

The Internet has been constantly evolving

...over the past 45+ years

Early Internet design decisions

- have far-reaching consequences today
- impact security, privacy, scalability, quality of service

To understand impact today

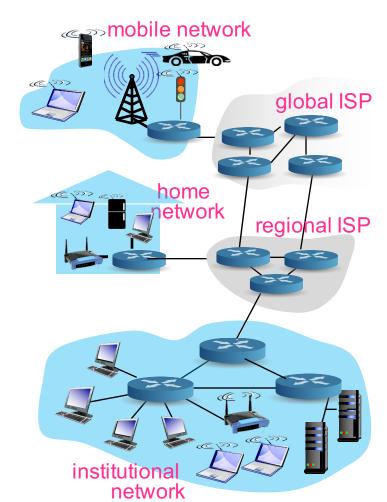
we need to first understand Internet structure

How is the Internet organized?

Billions of connected hosts

run network applications

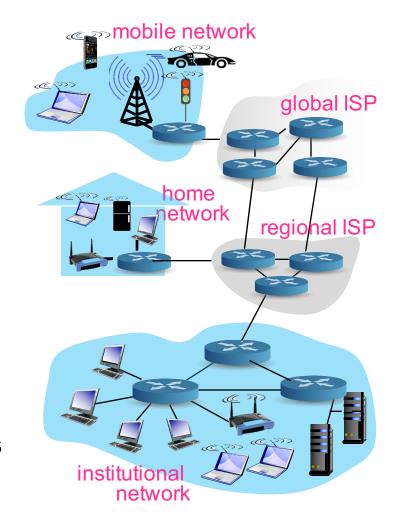
Communication links


- carry info between apps on hosts
- fiber, copper, radio, satellite
- transmission rate: data per second

Routers (like post offices)

- forward packets (like letters)

Digging deeper


Network edge

- hosts: clients and servers
- servers often in data centers

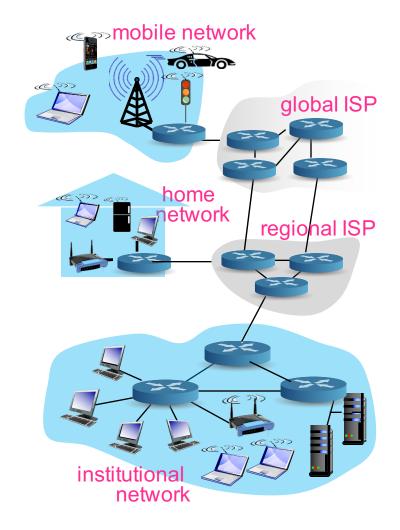
Network core

- interconnected routers
- network of networks

Internet is network of networks: i.e., internetwork Every device must implement IP (Internet Protocol) and have IP address

Internet provides services

Services to applications


e.g., web, VoIP, email, games, ecommerce, social networks

Programming interface to apps

- hooks
 - for sending and receiving app programs to connect to Internet
- service options
 - · analogous to postal service

Protocols

control message sending, receiving

Where to place functionality in Internet?

Option 1

inside network (switches/routers)

Option 2

- at edges (hosts)

Illustrates end-end principle

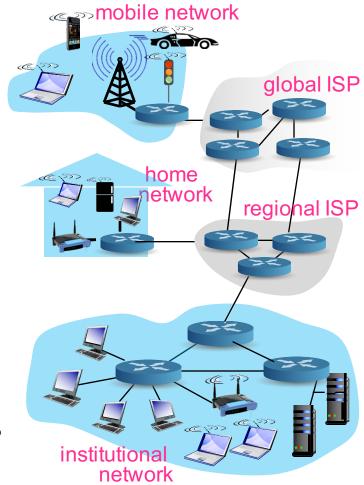
- some functionality can only be correctly implemented at end-hosts
 - e.g., file transfer
 - should each link check or end hosts check for loss/errors?
 - what if a link on path fails?

Internet Organization EDGE

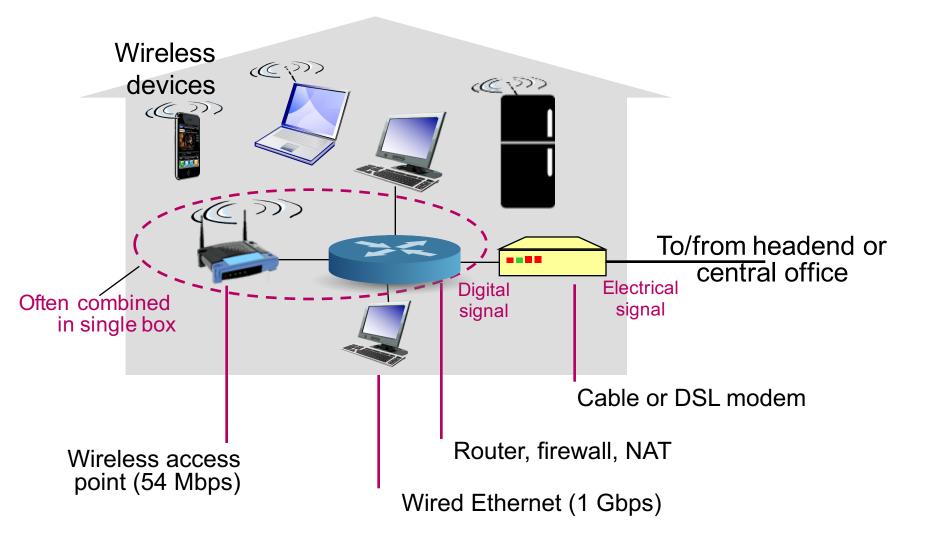
vumanfredi@wesleyan.edu

How do you connect to Internet?

Hosts connect to edge router

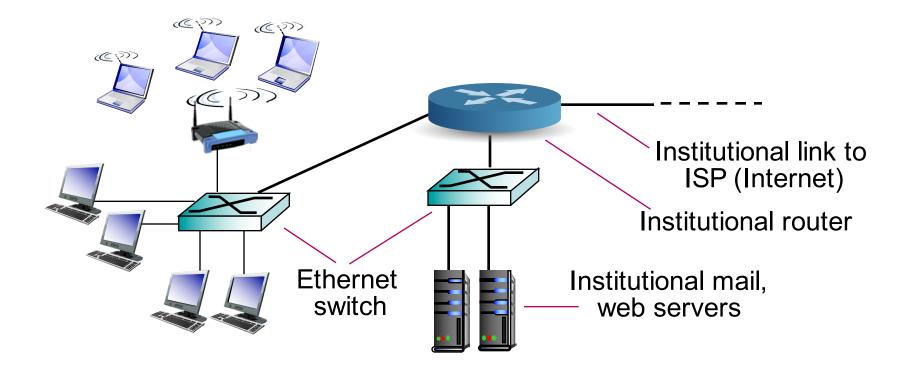

access network/ISP

Access networks


- residential
 - DSL (telephone), cable,
- institutional
 - school, company
- mobile

Issues

- bandwidth (bps) of access network?
- shared or dedicated?


Home access network

Enterprise access network (Ethernet)

Typically used in companies, universities, etc.

- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access network

Shared wireless access network

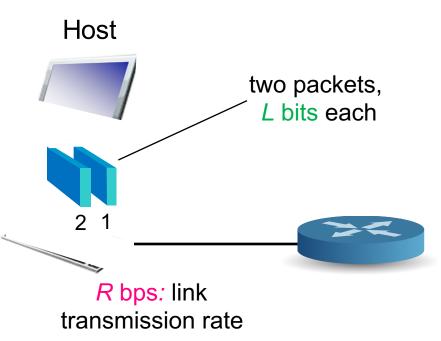
- connects end system to router via base station (aka "access point")

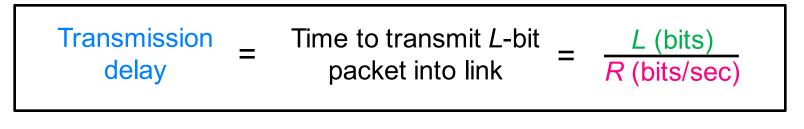
Wireless LANs

- within building (100 ft.)
- 802.11b/g/n (WiFi):
 - 11, 54, 450 Mbps

Wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- 3G, 4G: LTE





Host sends packets into access network

1. Given application message

- breaks into packets
 - smaller chunks of length L bits
- 2. Transmit packets into access network
 - at transmission rate R
 - aka link capacity
 - aka link bandwidth

