Lecture 18: Network Layer

Link State and Distance Vector Routing

COMP 332, Fall 2018
Victoria Manfredi

WESLEYAN

u N I Vv E R § I T Y

»
»®
‘a

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

— homework 7
« written due Wed., programming due next Wed.

2. Control plane
— overview
— link state routing
— distance vector routing

Control Plane
OVERVIEW

Internet’s network layer

Network layer functions on hosts and routers
— control plane vs. data plane

« path selection
* RIP, OSPF, BGP

 addressing conventions
 packet format

 packet handling conventions

forwarding
table

* error reporting
« router “signaling”

Control vs. data plane functions

Routing (slower time scale)

« determine route taken by packets
from source to destination

Forwarding (faster time scale)

* move packets from router’s input
port to appropriate router output port

Local forwarding table %

Dest IP Output port

129.133.%.% 2
43.7*.* 3
43.56.*.* 3
189.37.35.*| 1

Dest IP addr in header
of arriving packet

Routing protocols

Goal

— determine from sending hosts to receiving host,
through network of routers

Path

packets will traverse in going from given initial
source host to given final destination host

“‘Good”

— least “cost”, “fastest”, “least congested’, ...

— correctness constraints
* no loops
* no dead-ends

Abstract network as a graph

Graph: G = (N,E)

N = set of routers
={u,v,w, Xx,V, z}

E = set of links
={ (u,v), (U,x), (v,x), (V,w), (X,w), (X,y), (W,Y), (W,2), (V,2) }

Link costs
c(x,x’) = cost of link (x,Xx)

Q: how to set cost?

Cost could always be 1, related to
bandwidth, inversely related to
congestion, ...

Cost of path (x;, X, X5,..., X;) = C(X4,Xp) + C(Xp,X3) + ... + C(Xp.1,Xp)

Q: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

Classifying routing algorithms

Global vs. decentralized info
— global link state algorithms
« all routers have complete topology, link cost info

— decentralized distance vector algorithms
» router knows physically-connected neighbors, link costs to neighbors
* iterative computation
« exchange info with neighbors

— both link state and distance vector algorithms used on Internet

- first cover abstractly and then talk about specific Internet protocols
« OSPF, BGP, RIP, ...

Static vs. dynamic topology
— static: routes change slowly over time

— dynamic: routes change more quickly
» periodic update in response to link cost changes

Control Plane
LINK STATE ROUTING

Dijkstra’s algorithm

Link state: i.e., network topology, link costs

— known to all nodes, accomplished via link state broadcast
* msg sent to every other node in network

— all nodes have same global info

Computes least cost paths | Given path, put 15t hop
— from one “source” node to all other nodes “— router for each dst in
— obtain forwarding table for that node forwarding table
lterative

— after k iterations, know least cost path to k destinations
 if n nodes, loop n times

c(x,y): link cost from node x to y

Dij kStra,S algorith m D(V): current cost from source u to dst node v

p(v): predecessor node along path from source u to v

N': set of nodes whose least cost path definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 u 2,U 5,u 1,u °0 °0
1
2
3
4
5
Initialization
N" = {u}
for all nodes v
Source if v adjacent to u
node

then D(v) = c(u,v)
else D(v) =«

Dijkstra’s algorithm

Step N’
u 2,U
ux 2.U
UXyV

UXYVW

UXyVWZ

g D WODN-—_O

5

Source
node

D(v),p(v) D(w),p(w) D(x),p(x)

)

c(x,y): link cost from node x to y

D(Vv): current cost from source u to dst node v

p(v): predecessor node along path from source u to v
N': set of nodes whose least cost path definitively known

D(y).p(y) D(z),p(2)

>0) o0
(&)

4y

SO

Loop

Find w & N' s.t. D(w) is min

Add w to N'

Update D(v) for all neighbors v € N' of w
D(v) = min(D(v), D(w)+c(w,v))

Until all nodes in N’

Dijkstra’s algorithm

Step

g D WODN-—_O

Source
node

N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
u 2,u S5,u o i~
ux 2.U 4 x - *
uxy - 3 4ay
UXyVW ‘
UXyvwz
1. Build shortest path 2. Build forwarding
tree from predecessor table at u
S nodes dst | link
5 v (u,v)
X (u,x)
y | (ux)
w | (u,x)
z | (u,x)

Algorithm complexity with n nodes

Each iteration: need to check all nodes not in N’
— n(n+1)/2 comparisons: O(n?), more efficient implementations possible

Network is dynamic
— link goes down: link state broadcast
— router goes down: remove link and all nodes recompute

Oscillations possible
— when congestion or delay-based link cost

initially reccimpute ... recompute
rOUting Need to prevent routers
; o from synchronizing

computations:
0 ‘0/ T Have routers randomize
1 1+e when they send out link

T advertisements

X, y detect X, Y, z detect

better path better path

Control Plane
DISTANCE VECTOR ROUTING

Distance vector routing

Distance vector (DV)
— vector of best known costs from router to each dst and link to use

Each node x maintains

— Link cost from x to each neighbor v
* c(X,V)

— X's own DV
» D,(y): estimate of least cost path from x to node y
* Dx=[Duy):yeN]

— DV for each nbr v
* D,(y): estimate of least cost path from neighbor v to node y

* D, =[Duy):yeN]

Each node periodically sends its own DV to neighbors
— rather than link state costs

Bellman-Ford equation to update DV estimates

Uses dynamic programming
— break problem into simpler sub-problems
— solve each sub-problem once and store solution

Bellman-Ford equation
D,(y) := cost estimate of least-cost path from xtoy

D,(y) =min { c(x,v)+ D,(y) } for each node y € N
Vv

cost from nbrvtodsty
cost to nbr v

min taken over all
nbrs v of x

When x receives new DV estimate from neighbor
— X updates its own DV using B-F equation

Example: compute min cost path from u to z

Bellman-Ford equation

Dy(z) =min {c(u,v) + Dy(2),
c(u,x) + Dy(2),
c(u,w) + Dy(2) }

=min {2 + 5,
1+ 3,
5+ 3}

=4

Where
Dy(z) =9, Dy(z) =3, D,(z) =3

Node achieving minimum is next hop in shortest path
— putin forwarding table

Distance vector algorithm run at each node x

Initialization Loop
For alldsty e N l
if y is nbr of x X waits for change in local link
D,(y) =c(Xx,) cost or DV msg from neighbor
else l
D,(y) = < |
recompute estimates
For each nbr w and dsty e N D,(y)=minv{c(x,v)+D,(y)}
Dy (y) = =
Send x’s DV to all nbrs w Tx's DV to a.my dS_t has
changed, notify neighbors
Dy = [Du(y):y eN] I

Q: when does loop terminate?
When no more changes

D, (y) = min{c(x,y)+D,(y), c(x,2)+D,(y)} D,(z) = min{c(x,y)+D,(z), c(x,2)*+D,(2)}

=min{2+0, 7+1} =2 =min{2+1,7+0} =3
Node x costto cost to
Xy z y z
c XO/Z V4 c xﬁ 3
g Yoo § Yi2 0 1
Z|low oo Z\7 10

cost to
Nodey x y Z
X
B
= Z o0 o0 o0
Node z cost to
Xy z

