
Lecture 18: Network Layer
Link State and Distance Vector Routing

COMP 332, Fall 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 7

• written due Wed., programming due next Wed.

2. Control plane
– overview
– link state routing
– distance vector routing

2vumanfredi@wesleyan.edu

Control Plane

vumanfredi@wesleyan.edu 3

Network layer functions on hosts and routers
– control plane vs. data plane

forwarding
table

Routing protocols
• path selection
• RIP, OSPF, BGP

IP protocol
• addressing conventions
• packet format
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

Network
layer

vumanfredi@wesleyan.edu 4

Routing algorithm

Local forwarding table
Dest IP Output port

129.133.*.*
43.*.*.*
43.56.*.*
189.37.35.*

2
3
3
1

1
23

Dest IP addr in header
of arriving packet

Routing (slower time scale)
• determine route taken by packets

from source to destination
Forwarding (faster time scale)
• move packets from router’s input

port to appropriate router output port

vumanfredi@wesleyan.edu 5

Goal
– determine “good” path from sending hosts to receiving host,

through network of routers

Path
– sequence of routers packets will traverse in going from given initial

source host to given final destination host

“Good”
– least “cost”, “fastest”, “least congested”, …
– correctness constraints

• no loops
• no dead-ends

v
2

2
1

3

1

1
2

5
3

5

Graph: G = (N,E)

N = set of routers
= { u, v, w, x, y, z }

E = set of links
={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

u

x y

z

w

c(x,x’) = cost of link (x,x’)
c(w,z) = 5

Q: how to set cost?
Cost could always be 1, related to
bandwidth, inversely related to
congestion, …

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Q: What’s the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

v
2

2
1

3

1

1
2

5
3

5

u

x y

z

w

Global vs. decentralized info
– global link state algorithms

• all routers have complete topology, link cost info

– decentralized distance vector algorithms
• router knows physically-connected neighbors, link costs to neighbors
• iterative computation
• exchange info with neighbors

– both link state and distance vector algorithms used on Internet
• first cover abstractly and then talk about specific Internet protocols
• OSPF, BGP, RIP, …

Static vs. dynamic topology
– static: routes change slowly over time
– dynamic: routes change more quickly

• periodic update in response to link cost changes

Control Plane

vumanfredi@wesleyan.edu 10

Link state: i.e., network topology, link costs
– known to all nodes, accomplished via link state broadcast

• msg sent to every other node in network
– all nodes have same global info

Computes least cost paths
– from one “source” node to all other nodes
– obtain forwarding table for that node

Iterative
– after k iterations, know least cost path to k destinations

• if n nodes, loop n times

Given path, put 1st hop
router for each dst in

forwarding table

vumanfredi@wesleyan.edu 11

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

c(x,y): link cost from node x to y
D(v): current cost from source u to dst node v
p(v): predecessor node along path from source u to v
N': set of nodes whose least cost path definitively known

12

Initialization
N' = {u}
for all nodes v

if v adjacent to u
then D(v) = c(u,v)

else D(v) = ∞

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

uxyvwz
uxyvw 4,y

2

2
1

3 1

2

5
3

5

4,yuxyv 3,y
3,y 4,yuxy 2,u

2,x2,u 4,x ∞ux
1,u

1

u

x

v w

z

y

Source
node

Loop
Find w ∉ N' s.t. D(w) is min
Add w to N'
Update D(v) for all neighbors v ∉ N' of w

D(v) = min(D(v), D(w)+c(w,v))
Until all nodes in N'

c(x,y): link cost from node x to y
D(v): current cost from source u to dst node v
p(v): predecessor node along path from source u to v
N': set of nodes whose least cost path definitively known

13

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

uxyvwz
uxyvw 4,y

4,yuxyv 3,y
3,y 4,yuxy 2,u

2,x2,u 4,x ∞ux
1,u

v
x
y
w
z

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

dst link

2. Build forwarding
table at u

2

2
1

3 1

2

5
3

1

u

x

v w

z

y

5

Source
node

1. Build shortest path
tree from predecessor

nodes

14

Each iteration: need to check all nodes not in N’
– n(n+1)/2 comparisons: O(n2), more efficient implementations possible

Network is dynamic
– link goes down: link state broadcast
– router goes down: remove link and all nodes recompute

Oscillations possible
– when congestion or delay-based link cost

w
z

y
x

1 1+e

e0

e
1 1

0 0

initially

w
z

y
x

x, y detect
better path

2+e 0

00
1+e 1

w
z

y
x

x, y, z detect
better path

0 2+e

1+e1
0 0

… recompute
routing

… recompute
Need to prevent routers
from synchronizing
computations:
Have routers randomize
when they send out link
advertisements

15

Control Plane

vumanfredi@wesleyan.edu 16

Distance vector (DV)
– vector of best known costs from router to each dst and link to use

Each node x maintains
– Link cost from x to each neighbor v

• c(x,v)
– x’s own DV

• Dx(y): estimate of least cost path from x to node y
• Dx = [Dx(y): y є N]

– DV for each nbr v
• Dv(y): estimate of least cost path from neighbor v to node y
• Dv = [Dv(y): y є N]

Each node periodically sends its own DV to neighbors
– rather than link state costs

vumanfredi@wesleyan.edu 17

Uses dynamic programming
– break problem into simpler sub-problems
– solve each sub-problem once and store solution

Bellman-Ford equation
Dx(y) := cost estimate of least-cost path from x to y
Dx(y) = min { c(x,v) + Dv(y) } for each node y ∊ N

When x receives new DV estimate from neighbor
– x updates its own DV using B-F equation

v

cost to nbr v

min taken over all
nbrs v of x

cost from nbr v to dst y

vumanfredi@wesleyan.edu 18

Node achieving minimum is next hop in shortest path
– put in forwarding table

Dv(z) = 5, Dx(z) = 3, Dw(z) = 3

Du(z) = min { c(u,v) + Dv(z),
c(u,x) + Dx(z),
c(u,w) + Dw(z) }

= min {2 + 5,
1 + 3,
5 + 3}

= 4

Bellman-Ford equation

2

2
1

3 1

2

5
3

1

u

x

v w

z

y

5

Where

vumanfredi@wesleyan.edu 19

Initialization
For all dst y є N

if y is nbr of x
Dx(y) = c(x, y)

else
Dx(y) = ∞

For each nbr w and dst y є N
Dw(y) = ∞

Send x’s DV to all nbrs w
Dx = [Dx(y) : y є N]

x waits for change in local link
cost or DV msg from neighbor

recompute estimates

Dx(y) = min v { c(x,v) + Dv(y) }

if x’s DV to any dst has
changed, notify neighbors

Loop

Q: when does loop terminate?
When no more changes 20

x y z
x
y
z

0 2 7
∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro
m

x y z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z
x
y
z

∞∞ ∞
7 0

cost to

∞ ∞ ∞

x z
12

7

y

Dx(y) = min{c(x,y)+Dy(y), c(x,z)+Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y)+Dy(z), c(x,z)+Dz(z)}
= min{2+1 , 7+0} = 3

x y z
x
y
z

0

fro
m

cost to

2 0 1
7 1 0

72 2 3

1

∞
2 0 1

Node x

Node y

Node z

timevumanfredi@wesleyan.edu 21

