Lecture 17: Network Layer Addressing, Control Plane, and Routing

COMP 332, Fall 2018 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University, and some material from Computer Networks by Tannenbaum and Wetherall.

Today

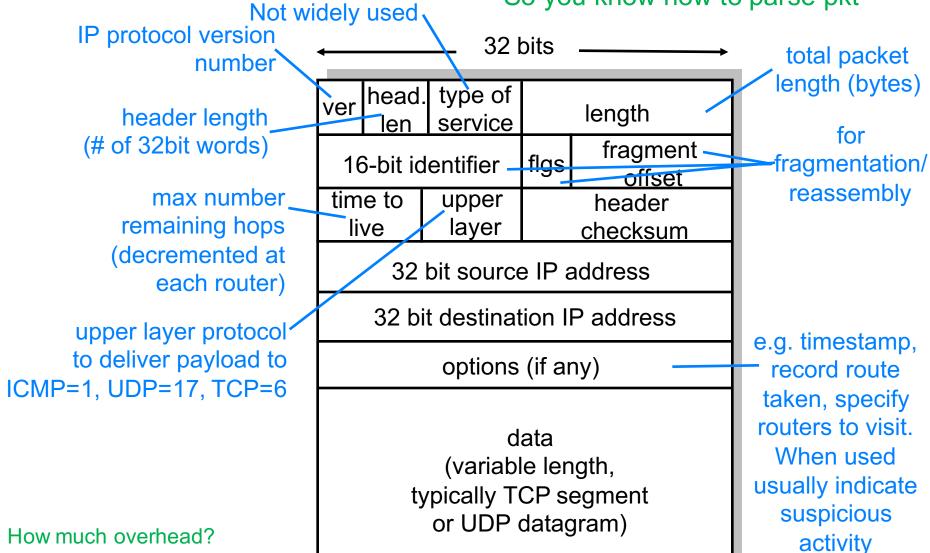
1. Announcements

- hwk 6 due Thursday by 11:59p
- hwk 7 posted: written due in 1 week, programming due in 2 weeks

Internet protocol

3. Network programming

raw sockets and byte packing


4. Addressing

- IPV4 addresses
- usage in routing
- how to get an IP address

Network Layer INTERNET PROTOCOL

IP packet format

Q: Why is version 1st? So you know how to parse pkt

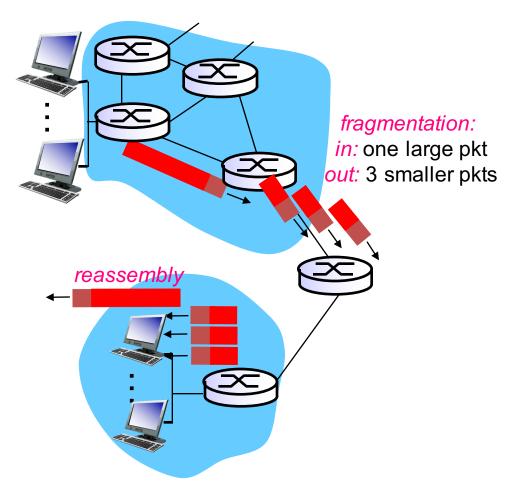
Bits transmitted left to right, top to bottom

20 bytes of TCP

20 bytes of IP

Wireshark

Look at IP headers and ping/traceroute

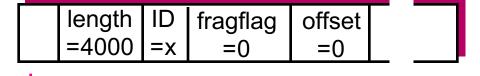

IP fragmentation and reassembly

Network links have MTU

- largest possible link-level frame
- different link types have different MTUs

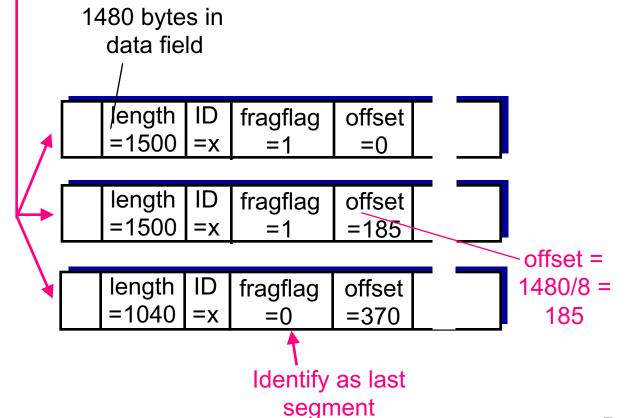
Fragment when pkt > MTU

- 1 pkt becomes several pkts
 - IP header bits used to identify and order related fragments
- reassembled only at final dst
- re-fragmentation possible
- don't recover from lost fragments
- (IPv6 does not support)



DoS attack: send fragmented pkts but leave one out

IP fragmentation and reassembly


4000 byte packet

- 3980 bytes payload
- IP hdr >=20 bytes

MTU = 1500 bytes

One large pkt becomes several smaller pkts

Network Programming RAW SOCKETS

Raw sockets

Take bytes put into socket and push out of network interface

no IP or transport layer headers added by operating system!

Lets you create your own transport and network layer headers

- set field values as you choose
 - e.g., time-to-live fields

Raw sockets

https://docs.python.org/3/library/socket.html

Byte packing and structs

```
def create_icmp_header(self):
   ECHO_REQUEST_TYPE = 8
   ECHO_CODE =
   # ICMP header info from https://tools.ietf.org/html/rfc792
   icmp_type = ECHO_REQUEST_TYPE # 8 bits
   icmp code = ECHO CODE
   icmp checksum =
                               # 16 bits
   icmp_identification = self.icmp_id # 16 bits
   icmp seq number = self.icmp seqno # 16 bits
   # ICMP header is packed binary data in network order
   icmp_header = struct.pack('!BBHHH', # ! means network order
   icmp_type, # B = unsigned char = 8 bits
   icmp_code, # B = unsigned char = 8 bits
   icmp_checksum, # H = unsigned short = 16 bits
   icmp_identification, # H = unsigned short = 16 bits
   icmp seq number) # H = unsigned short = 16 bits
   return icmp_header
```

Addressing IPV4 ADDRESSES

IPv4 addresses

Globally unique 32-bit identifier

- associated with host or router interface
- interface: connection between host/router and physical link
 - host: usually 1 or 2 interfaces
 - router: usually many interfaces

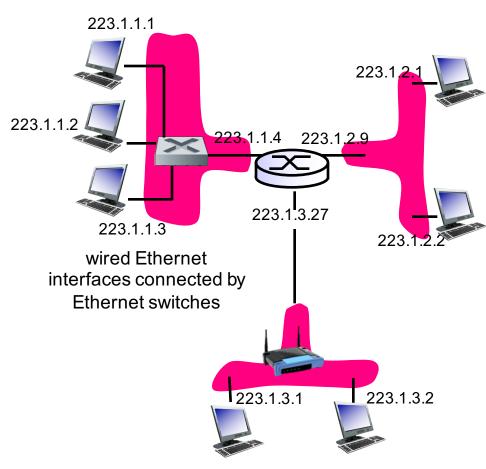
Address format is hierarchical

- CIDR: Classless InterDomain Routing
- split into subnet part and host part
 - a.b.c.d/x, where x is # bits in subnet part

What's a subnet?

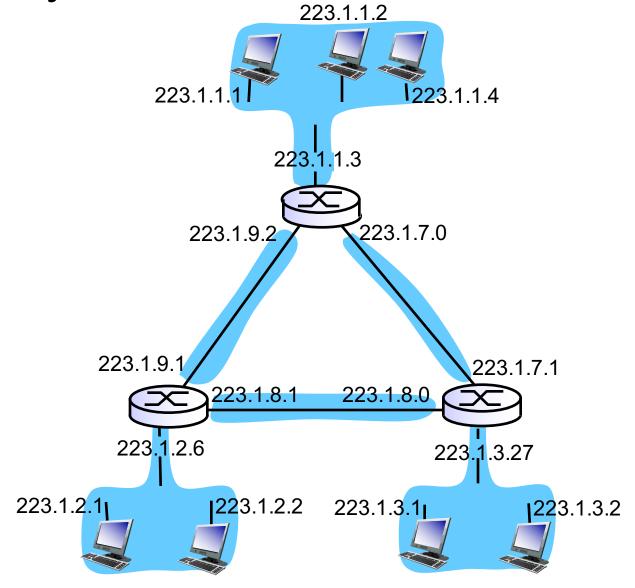
Subnet

- set of interfaces with same subnet part of IP addr
- devices reachable without intervening routers


Subnet mask

- divides IP addr into subnet addr + host addr
- included in routing info given to routers

Recipe to find subnets


- detach each interface from its host or router
- create islands of isolated networks, i.e., subnets

Network comprising 3 subnets

wireless WiFi interfaces connected by WiFi base station

How many subnets?

Subnet mask example

Subnet mask

- zeroes out host part
- e.g., 200.23.16.0/23
 - 11111111 11111111 11111110 00000000
- take logical "and" of subnet mask with address to get subnet part
 - 1 AND 1 → 1
 - 1 AND $0 \rightarrow 0$
 - $0 \text{ AND } 1 \rightarrow 0$
 - $0 \text{ AND } 0 \rightarrow 0$

Ifconfig example

```
> ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
        options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
        inet 127.0.0.1 netmask 0xff000000
        inet6 ::1 prefixlen 128
        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
        nd6 options=201<PERFORMNUD,DAD>
gif0: flags=8010<POINTOPOINT, MULTICAST> mtu 1280
stf0: flags=0<> mtu 1280
en0: flags=8863<UP, BROADCAST, SMART, RUNNING, SIMPLEX, MULTICAST> mtu 1500
        ether 78:4f:43:73:43:26
        inet6 fe80::1c8d:4bcb:b52d:9d1d%en0 prefixlen 64 secured scopeid 0x5
        inet 10.66.104.246 netmask 0xfffffc00 broadcast 10.66.107.255 →
        nd6 options=201<PERFORMNUD,DAD>
        media: autoselect
        status: active
Hex is [0:15] where A=10, B=11, C=12, D=13, E=14, F=15
```

```
1111 1111 1111 1111 1100 0000 0000 Q: Why is broadcast f f f f c 0 0 addr 10.66.107.255?
```

Subnet masks and address blocks

Suppose

- we must have 223.1.1 as network prefix
- we need block of 90 addresses

What should subnet mask be?

– how many bits for 90 addresses?

223.1.1.0/25 gives 128 addresses [0-127]

223.1.1.128/25 gives a different set of 128 addresses [128-255]

IP addresses are hierarchical

Pros

- scalable: routers don't need to look at host part
- all pkts on same network forwarded in same direction
 - only when pkt reaches network does host matter

Cons

- every IP addr belongs to specific network
- what if host moves networks and wants to keep same addr?
 - mobile IP
 - contrast with fixed Ethernet link layer addr

Special addresses

Private subnet (used in NAT), do not appear on Internet

- 172.16-31.*.*
- 10.*.*.*
- **192.168.*.***

Loopback address:

- 127.*.*.*

Addresses you can't assign to devices

- *.*.*.255: broadcast addr
- *.*.*.0: used for subnet name

Broadcast address

- 255.255.255.255: broadcast to all hosts on network indicated
 - if no mask: local network
 - if mask: broadcast on that network

Address when device booting up

-0.0.0.0

Addressing USAGE IN ROUTING

Routers forward traffic to networks not hosts

Forwarding table

- does not contain row for every dest IP address
- instead computes routes between subnets (blocks of addresses)

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through	0
11001000 00010111 00010111 11111111	
11001000 00010111 00011000 00000000	1
through 11001000 00010111 00011000 11111111	I
11001000 00010111 00011001 00000000 through	2
11001000 00010111 00011111 11111111	2
otherwise	3

What if address ranges don't divide up nicely?

Longest prefix matching

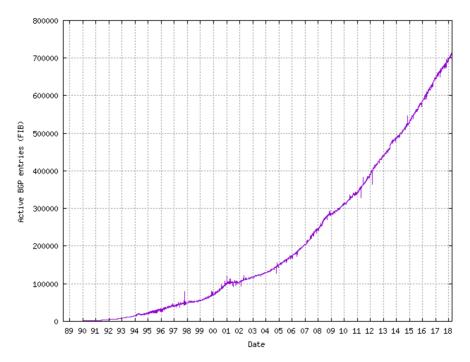
use longest address prefix that matches destination address

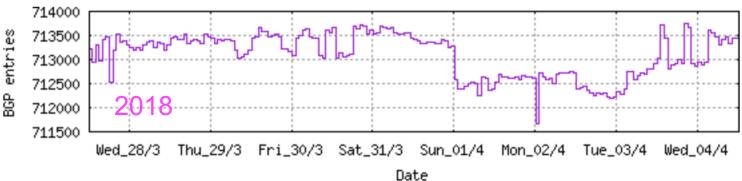
Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *****	2
otherwise	3

Question

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

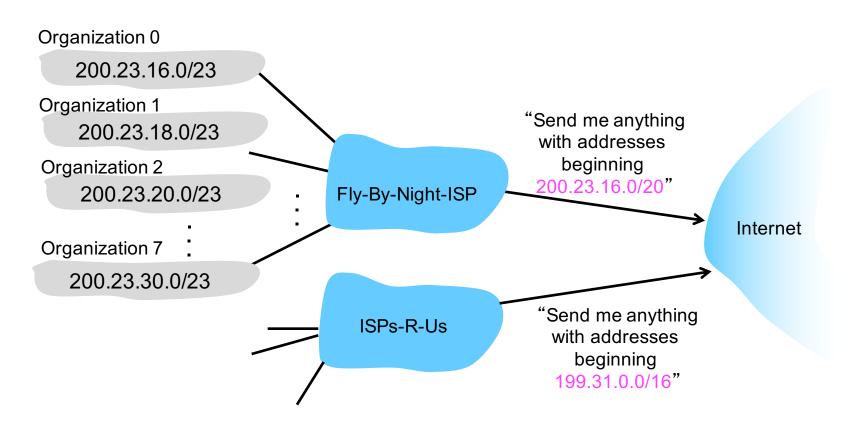

which interface? which interface?


How big is a routing table for a core router?

From http://www.cidr-report.org/as2.0/

Table History

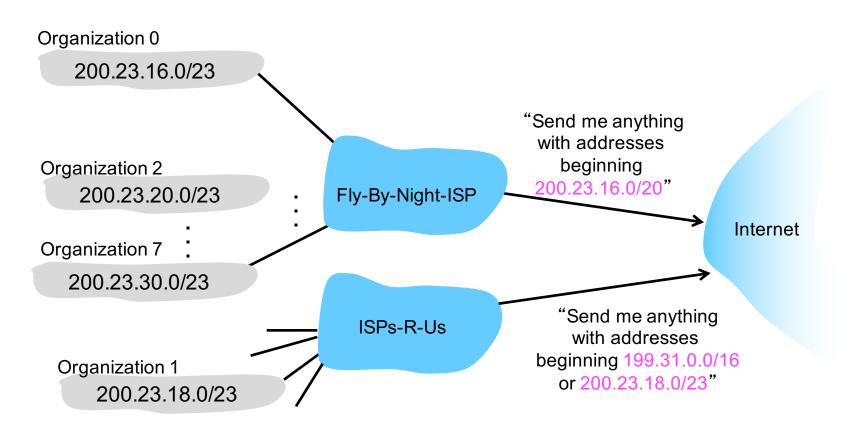
Date	Prefixes	CIDR Aggregated
28-03-18	713318	386580
29-03-18	713461	386983
30-03-18	713175	387365
31-03-18	713602	387141
01-04-18	713267	386331
02-04-18	712612	386192
03-04-18	712224	386045
04-04-18	712855	386936



Q: If a core router processes 1million pkts+ per second, how fast does it need to be able to search table?

Hierarchical addressing

Route aggregation


- combine multiple small prefixes into a single larger prefix
- allows efficient advertisement of routing information

Longest prefix matching

More specific routes

ISPs-R-Us has a more specific route to Organization 1

Addressing HOW TO GET AN IP ADDRESS?

How does ISP get block of addresses?

ICANN

- Internet Corporation for Assigned Names and Numbers
- http://www.icann.org/

ICANN functions

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes
- ..

How does network get net part of IP address?

Allocated portion of its provider ISP's address space

ISP's block	11001000 0001011	00010000	00000000	200.23.16.0/20
Organization 0	11001000 0001011	00010000	00000000	200.23.16.0/23
Organization 1	11001000 0001011	0001001	00000000	200.23.18.0/23
Organization 2	11001000 0001011	0001010	00000000	200.23.20.0/23
•••				
Organization 7	11001000 0001011°	00011110	00000000	200.23.30.0/23

How does host get an IP address?

Option 1

hard-coded by system admin in a file on your host

Option 2:

- dynamically get address from a server
 - DHCP: Dynamic Host Configuration Protocol

We're running out of IPv4 addresses

Why?

- inefficient use of address space
 - from pre-CIDR use of address classes (A: /8, B: /16, C: /24)
- too many networks (and devices)
 - Internet comprises 100,000+ networks
 - routing tables and route propagation protocols do not scale

Q: how many IPv4 addresses are there?

 -2^{32}

Solutions

- IPv6 addresses
- DHCP: Dynamic Host Configuration Protocol
- NAT: Network Address Translation