Lecture 15: Transport Layer

Congestion Control
COMP 332, Fall 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.



Today

1. Announcements
— homework 6 posted
— midterm returned once 2 more students write exam

2. Flow control
3. Congestion causes and costs

4. TCP congestion control



TCP
FLOW CONTROL



What if sender overwhelms receiver?

Problem

Application may remove data

Application
process

from TCP socket buffers ....

... slower than TCP receiver is

TCP socket
receiver buffers
/\

delivering (sender is sending)

A

TCP
code

IP
code

1] 'Y
I

from sender

Receiver protocol stack




TCP flow control

Receiver provides feedback to sender
— so0 sender doesn’t overflow receiver’s buffer
— sender and receiver each maintain window

Receiver Receiver-side buffering
— rwnd: free space in RcvBuffer to application process
— puts rwnd in TCP header of
iver-to- 1
receiver-to-sender segments RevBuffer UG T
Sender T
o rwn free buffer space
— limits unacked data to rwnd v
— ensures RcvBuffer will not I
overflow

TCP segment payloads



Receive window (rwnd)

<

Source Port: 443

Destination Port: 52232

[Stream index: 0]

[TCP Segment Len: 0]

Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes

4

000. .... .... = Reserved: Not set
T . = Nonce: Not set
vass 0.u. .... = Congestion Window Reduced (CWR): Not set
vess +0.. .... = ECN-Echo: Not set
vess 220, .... = Urgent: Not set
vass sxsl ... = Acknowledgment: Set
vass wass 0... = Push: Not set
«.:x «0.. = Reset: Not set

Coeees e lo=SyniSet

.. .- Ean IIIO=Fin: Not Set

W*]
indow size value: 8190

[Calculated window size: 8190]

~L . Nn.. _LNnn P77 2 a2 = PR UL S RS |




Receiver use of receive window (rwnd)

Keeps track of available space in its RcvBuffer

Last byte read by
app process

RcvBuffer (B)
A
Read bytes | Received bytes Ric;?;\;ed Free space
\ Y J
rwnd
Next byte Last byte
needed received

rwnd = B — (last byte received — last byte read)




Sender use of receive window (rwnd)

Limits # of in-flight segments of sender

SendBuffer (B)
I

ACK'd Sent NG dat
bytes bytes 0 data
Al
|
rwnd
1st unACK’d Last byte can
byte send (= last byte

written by app)

Sending rate limited to: rwnd bytes/RTT seconds



Sender use of receive window (rwnd)

Problem: if rwnd = 0, what happens?

SendBuffer (B)
I

e No data
bytes
f
rwnd
1st unACK’d Last Pyte can
byte send (= last byte

written by app)

No ACKs sent: receiver has no way to let sender know rwnd increased
Solution: send segments with 1 byte of data, which receiver ACKs



Congestion
CAUSES AND COSTS



What if sender overwhelms network?

Receive buffer is not only resource limitation
— every packet travels through path of routers
— routers may be congested, have long queues ...

Causes of network congestion
— many senders compete for network resources

— senders lack knowledge
« amount of resources available (bandwidth)
 # of other senders competing



Costs of network congestion

As queues in bottleneck Bad feedhack AS timeouts expire at sender
link fill up: large packet ad feedbac due to delays/drops:

|
delays, dropped packets loop! packets retransmitted

Problem
— retransmission treats symptoms but not underlying problem

Q: how to solve underlying problem of congestion?
— reduce sending rate ... but what should sending rate be?

» depends on available bandwidth
» sender increases/decreases sending rate based on congestion level



Recall link and network resources are shared

1. Hosts: divide data to send
into fixed-length packets

. V/
“ 2. Routers: interleave
Host 1 packets from different
\ hosts on links
= |
| =
N _

www.google.com

Host 2 m



Scenario 1

No retransmission, 2 senders, 2 receivers

Original data: A, HostA Throughput: A

Infinite buffers:
Host unlimited shared
output link buffers

7

g

e

Output link capacity: R

No loss
RIZ e
ﬁ?fa ldgtaeyskas | Even though high
= Max :per— (>B’ approaclh’esm’ E throughput when close to
< connection 9 capacity /. ; capacity, also high delay!
throughput: R/2 |
| i Q: Why R/2?

Ain R'/z Min R/2



Scenario 2: retransmission

Sender retransmits timed-out packet
— Ain = Aouis @pp-layer input equals app-layer output
— )i, 2\, transport-layer input includes retransmissions

Original data: A, HostA Throughput: Aq ¢
Retransmitted +
original data: Finite buffers:
2 limited shared
in output link buffers

=
Output link capacity: R

Loss

Performance depends on how retransmission performed...



Scenario 2: retransmission + perfect knowledge

|dealization: perfect knowledge R/ 27

— sender sends only when router buffers available 3
— no loss occurs, so ', = A,

7‘*in

Nin

Output link
Capacity: R Free bUffer
space



Scenario 2: retransmission only when lost

L R/2
|dealization: known loss
— packets can be lost, dropped at -
router due to full buffers <

— only resend packet known to be lost

7‘*in

Nin

i

Output link
Capacity: R Free bUffer
space

. when sending at R/2,
E some packets are

| retransrissions but

i asymptotic goodput

' s still R/2 (why?)

R




Scenario 2: retransmission causing duplicates

o : R/2
Realistic: duplicates
— packets can be lost, dropped at -
router due to full buffers <

— sender times out prematurely
» sends 2 copies, both delivered

Output link
Capacity: R Free bUffer
space

Finite buffers

. when sending at R/2,
I some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

R




TCP
CONGESTION CONTROL



Goals of TCP congestion control

1. Discover available bandwidth
— how much bandwidth can be used without causing congestion
« will vary over time
— estimate starting from no information

2. Correctly set sending rate
— should not exceed available bandwidth

3. Fairness
— no user gets all of the bandwidth



TCP Congestion Control

Sender limits transmission
LastByteSent-LastByteAcked < cwnd

cwnd is dynamic, function of
perceived network congestion

TCP sending rate
— roughly
« send cwnd bytes
« wait RTT for ACKs
« send more bytes

cwnd

rate & bytes/sec

sender sequence number space
j— cwnd —>|

last byte Iast byte
ACKed sent

Q: How does sender
estimate cwnd?



To estimate cwnd

Detect congestion

— delays
« large RTTs: too variable to be used in practice

—

— duplicate ACKs

* isolated loss Use to adjust cwnd,

= affecting sending rate
— timer expired
* multiple losses

=

How to intuitively adjust cwnd
— ACK received: increase cwnd
- decrease cwnd



3 states in TCP finite state machine

Goal: send segments, adjust cwnd as needed

1. Slow start

— determine available bandwidth starting from no info

2. Congestion avoidance
— deal with fluctuations in bandwidth

3. Fast recovery
— quickly recover from isolated lost packets

We'll first look at different states, then full FSM



Slow start: initialization

Host A Host B

Initial rate is “slow” q/ ﬁ
— relative to original TCP which >

had no congestion control A W
n
— initially cwnd =1 MSS E
v

two Se ents
Ramp up exponentially fast gk

— every time ACK received
« cwnd = cwnd + MSS

— essentially doubles cwnd
every RTT

Ul Segments

time




Congestion avoidance

Additive Increase Multiplicative Decrease (AIMD)
— probe cautiously for usable bandwidth

— additive increase
« cautious: increase cwnd by 1 MSS every RTT until loss detected

— multiplicative decrease
» aggressive: cut cwnd in half after loss

additively increase window size ...

... until loss occurs, then cut window in half
9 4 J AIMD saw tooth
5 behavior: probing
for bandwidth

time



Finite state machine

New
ACKl =
new ACK

cwnd = cwnd+MSS

dup ACK

dupACKcount++

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount=10

( 9l tlmeout</

ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount=0
retxmt missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3

dupACKcount=0
txmt new segment(s), as
llowed

®

N

’o:’jd
(e { N

ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount= 0

retxmt missing segment

timeout

ssthresh = cwnd/2 %
cwnd =1

dupACKcount=0 New ACK
retxmt missing segment cwnd = ssthresh

dupACKcount=0

Fast

retxmt missing segment

<

recovery

L)

dup ACK

new ACK

cwnd = cwnd + MSS * (MSS/cwnd)

dupACKcount=0
txmt new segment(s), as allowed

cwnd > ssthresh
A g Congestion
| ACK
}‘] timeout avoidance dup AC

dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh+3MSS
retxmt missing segment

cwnd = cwnd + MSS 26
txmt new segment(s), as allowed



