
Lecture 15: Transport Layer
Congestion Control
COMP 332, Fall 2018

Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 6 posted
– midterm returned once 2 more students write exam

2. Flow control

3. Congestion causes and costs

4. TCP congestion control

2vumanfredi@wesleyan.edu

TCP

vumanfredi@wesleyan.edu 3

4

Application
process

TCP socket
receiver buffers

TCP
code

IP
code

App

OS

Receiver protocol stack

Application may remove data
from TCP socket buffers ….

… slower than TCP receiver is
delivering (sender is sending)

from sender

Problem

Receiver provides feedback to sender
– so sender doesn’t overflow receiver’s buffer
– sender and receiver each maintain window

5vumanfredi@wesleyan.edu

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
Receiver-side bufferingReceiver

– rwnd: free space in RcvBuffer
– puts rwnd in TCP header of

receiver-to-sender segments

Sender
– limits unacked data to rwnd
– ensures RcvBuffer will not

overflow

6

Keeps track of available space in its RcvBuffer

7

Free space

Last byte read by
app process

rwnd

Read bytes Received bytes Received
bytes

RcvBuffer (B)

Next byte
needed

Last byte
received

rwnd = B – (last byte received – last byte read)

Limits # of in-flight segments of sender

8

No data

rwnd

ACK’d
bytes

SendBuffer (B)

1st unACK’d
byte

Last byte can
send (= last byte
written by app)

Sending rate limited to: rwnd bytes/RTT seconds

Sent
bytes

Problem: if rwnd = 0, what happens?

9

No data

rwnd

ACK’d
bytes

SendBuffer (B)

1st unACK’d
byte

Last byte can
send (= last byte
written by app)

No ACKs sent: receiver has no way to let sender know rwnd increased
Solution: send segments with 1 byte of data, which receiver ACKs

Congestion

vumanfredi@wesleyan.edu 10

Receive buffer is not only resource limitation
– every packet travels through path of routers
– routers may be congested, have long queues …

Causes of network congestion
– many senders compete for network resources
– senders lack knowledge

• amount of resources available (bandwidth)
• # of other senders competing

vumanfredi@wesleyan.edu 11

Problem
– retransmission treats symptoms but not underlying problem

Q: how to solve underlying problem of congestion?
– reduce sending rate … but what should sending rate be?

• depends on available bandwidth
• sender increases/decreases sending rate based on congestion level

12vumanfredi@wesleyan.edu

Bad feedback
loop!

As queues in bottleneck
link fill up: large packet
delays, dropped packets

As timeouts expire at sender
due to delays/drops:
packets retransmitted

1. Hosts: divide data to send
into fixed-length packets

13

www.google.com
Host 2

Host 1
2. Routers: interleave
packets from different
hosts on links

vumanfredi@wesleyan.edu

No retransmission, 2 senders, 2 receivers

14

Infinite buffers:
unlimited shared

output link buffers

Throughput: lout

Output link capacity: R

Max per-
connection

throughput: R/2

R/2

R/2

l o
ut

lin R/2

de
la

y

lin

Large delays as
arrival rate, lin,

approaches
capacity

No loss

Q: Why R/2?

Host AOriginal data: lin

Host B

Even though high
throughput when close to
capacity, also high delay!

Sender retransmits timed-out packet
– lin = lout: app-layer input equals app-layer output
– l’in ≥ lin: transport-layer input includes retransmissions

15

Finite buffers:
limited shared

output link buffers

Host AOriginal data: lin

Host B

Throughput: lout

Output link capacity: R
Loss

Retransmitted +
original data:
l'in

Performance depends on how retransmission performed…

Idealization: perfect knowledge
– sender sends only when router buffers available
– no loss occurs, so l’in = lin

16

Finite buffers

Output link
capacity: R

l'in

Free buffer
space

R/2

R/2

l o
ut

lin

Copy

lout

lin

Idealization: known loss
– packets can be lost, dropped at

router due to full buffers
– only resend packet known to be lost

17

Finite buffers

Output link
capacity: R

l'in

Free buffer
space

Copy

lout

lin

R/2

R/2lin

l o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

Realistic: duplicates
– packets can be lost, dropped at

router due to full buffers
– sender times out prematurely

• sends 2 copies, both delivered

18

Finite buffers

Output link
capacity: R

l'in

Free buffer
space

Copy

lout

lin

R/2

R/2lin

l o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

timeout

TCP

vumanfredi@wesleyan.edu 19

1. Discover available bandwidth
– how much bandwidth can be used without causing congestion

• will vary over time
– estimate starting from no information

2. Correctly set sending rate
– should not exceed available bandwidth

3. Fairness
– no user gets all of the bandwidth

20vumanfredi@wesleyan.edu

Sender limits transmission

cwnd is dynamic, function of
perceived network congestion

TCP sending rate
– roughly

• send cwnd bytes
• wait RTT for ACKs
• send more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

cwndLastByteSent-LastByteAcked < cwnd
sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

vumanfredi@wesleyan.edu 21

Q: How does sender
estimate cwnd?

Detect congestion
– delays

• large RTTs: too variable to be used in practice

– duplicate ACKs
• isolated loss

– timer expired
• multiple losses

How to intuitively adjust cwnd
– ACK received: increase cwnd
– loss detected: decrease cwnd

22vumanfredi@wesleyan.edu

Use to adjust cwnd,
affecting sending rate

Goal: send segments, adjust cwnd as needed

1. Slow start
– determine available bandwidth starting from no info

2. Congestion avoidance
– deal with fluctuations in bandwidth

3. Fast recovery
– quickly recover from isolated lost packets

We’ll first look at different states, then full FSM

23vumanfredi@wesleyan.edu

Initial rate is “slow”
– relative to original TCP which

had no congestion control
– initially cwnd = 1 MSS

Ramp up exponentially fast
– every time ACK received

• cwnd = cwnd + MSS
– essentially doubles cwnd

every RTT

24

Host A

RT
T

Host B

time

vumanfredi@wesleyan.edu

Additive Increase Multiplicative Decrease (AIMD)
– probe cautiously for usable bandwidth
– additive increase

• cautious: increase cwnd by 1 MSS every RTT until loss detected
– multiplicative decrease

• aggressive: cut cwnd in half after loss

cw
nd AIMD saw tooth

behavior: probing
for bandwidth

additively increase window size …
…. until loss occurs, then cut window in half

time 25

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retxmt missing segment

L
cwnd > ssthresh

Congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
txmt new segment(s), as allowed

new ACK .

dupACKcount++
dup ACK

Fast
recovery

cwnd = cwnd + MSS
txmt new segment(s), as allowed

dup ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retxmt missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retxmt missing segment ssthresh= cwnd/2

cwnd = ssthresh+3MSS
retxmt missing segment

dupACKcount == 3
cwnd = ssthresh

dupACKcount = 0

New ACK

Slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retxmt missing segment

cwnd = cwnd+MSS
dupACKcount = 0
txmt new segment(s), as
allowed

new ACK

dupACKcount++
dup ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

26

