
Lecture 13: Transport Layer
Flow and Congestion Control

COMP 332, Fall 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down 
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved 
as well as from slides by Abraham Matta at Boston University, and some material 

from Computer Networks by Tannenbaum and Wetherall.



1. Announcements
– exam wed!

2. Midterm overview
– exam format 

3. TCP
– reliable data transfer
– connection management
– flow control

2vumanfredi@wesleyan.edu



Midterm

vumanfredi@wesleyan.edu 3



In class on Wednesday, Oct. 17
– closed book, closed notes
– covers material in lectures 1 to 12

Will not ask questions on
– probability

5 questions
– app layer short questions
– HTTP persistent vs. non-persistent connections
– transport layer short questions
– socket coding
– reliable data transport protocol

vumanfredi@wesleyan.edu 4



App layer and transport layer short questions
– 8 in total
– similar to review questions in book
– should only need to write a few sentences to answer

vumanfredi@wesleyan.edu 5



HTTP persistent vs. non-persistent connections
– review related homework question

vumanfredi@wesleyan.edu 6



Socket coding
– be able to write code to open, use, and close sockets
– differences between client and server code

vumanfredi@wesleyan.edu 7



Design a reliable data transfer protocol
– given channel characteristics design most efficient protocol
– be able to design reliable data transfer protocol like stop-and-wait
– know your timeline diagrams

vumanfredi@wesleyan.edu 8



TCP

vumanfredi@wesleyan.edu 9



Time-out period often relatively long
– long delay before resending lost packet

Duplicate ACKs indicate isolated loss 
– rather than congestion causing many losses

• sender often sends many segments back-to-back
• if segment is lost, likely many duplicate ACKs
• ACKs being received indicates some packets received at destination 

since ACK sent for every packet: so not congestion

TCP fast retransmit
– if sender receives 3 ACKs for same data (triple duplicate ACKs)

• resend unacked segment with smallest seq #
– Q: why 3?

• pkts may just have been reordered otherwise
• likely that unacked segment lost, so don’t wait for timeout 10



X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100
tim

eo
ut

ACK=100

ACK=100
ACK=100

1-11

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

tim
eo

ut

send_base = 92

Restart timer,
send_base = 100

Fast retransmit



TCP

vumanfredi@wesleyan.edu 12



Before exchanging data, sender/receiver handshake
– establish connection and connection parameters
– tear down connection when done

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

vumanfredi@wesleyan.edu 13

sock = sock.connect((host, port)) conn, addr = server_sock.accept()

Client Server



Q: will 2-way handshake 
always work in network?

– variable delays
– retransmitted messages 

• e.g. req_conn(x)) due to 
message loss

– message reordering
– can’t see other side

14vumanfredi@wesleyan.edu

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB acc_conn(x)



15vumanfredi@wesleyan.edu

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client 
terminates

server
forgets x

connection 
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client 
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection 
x completes server

forgets x



SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data received ACK(y) 

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

vumanfredi@wesleyan.edu 16



closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

SYN(seq=x)

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for 
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)
L

vumanfredi@wesleyan.edu 17

sock = 
sock.connect((host, port))

conn, addr = 
server_sock.accept()



18vumanfredi@wesleyan.edu



Client, server each sends TCP segment with FIN bit = 1
– respond to received FIN with ACK (ACK can be combined with own FIN)

19

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB




