Lecture 1: Introduction

COMP 332, Fall 2018 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University and some material from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

Homework 1 out Wed., Sept. 5, due Wed. Sept. 12

2. Administrivia

3. Computer networks

overview

4. Building a network

- how to connect devices
- how to connect processes on devices
- how to share resources

Administrivia

Course webpage

Everything posted here

http://vumanfredi.web.wesleyan.edu/comp332-f18/

Please sign up for piazza

https://piazza.com/wesleyan/spring2018/comp332

Grade breakdown

- 40%: 2 exams
- 60%: 10 homework assignments, no scores dropped
 - mix of written and (multi-assignment) programming projects

Late days

- 4 free days, use at most 2 for any assignment
- Once used, you will lose 15% of grade for each 24 hours late

Getting started

Python3

- we'll review as needed, see class resources webpage
 - please check you have python3 installed!
 - type python3 at terminal prompt
 - tutorials and other resources posted on course website

Python help available

at SCIC on 1st floor of Exley

vim and python

- create a .vimrc file in your home directory
- put lines in block in .vimrc and save it
- open new terminal and use vim
 - should see color, line numbers, etc.

syntax on
filetype indent plugin on
set modeline
set number
autocmd BufWritePre * %s/\s\+\$//ei
au BufNewFile,BufRead *.py
\ set tabstop=4
\ set softtabstop=4
\ set shiftwidth=4
\ set textwidth=79
\ set expandtab
\ set autoindent
\ set fileformat=unix

Homework

1st homework out Wednesday

- warm-up homework: implement tic-tac-toe in python
- 2nd homework is to implement distributed tic-tac-toe using sockets

Submissions

- https://wesfiles.wesleyan.edu/home/vumanfredi/web/comp332f18/submissions/hw#/USERNAME/
- substitute your wesleyan username for USERNAME

Important!

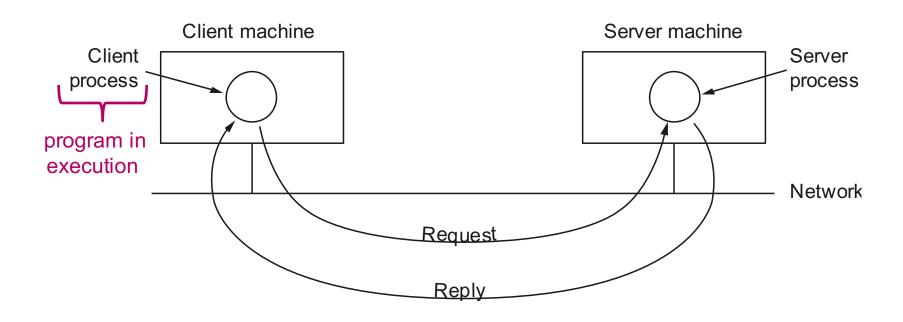
- put your name inside every file!
- file formats: only .py, pdf, .txt so my printing script works
 - if I can't print it, I can't grade it :-)
- filename should match what is specified

Looking forward

1st few weeks

- high-level overview of components of network
- familiarity with terminology
- covers a lot of material!

Rest of course


- digging into details of what we talked about in 1st few weeks
- will talk about each layer and component in much greater depth
- having had high-level should help give context for details

If you have questions or concerns please come talk to me

Computer Networks OVERVIEW

What's a computer network?

2 or more computing devices able to exchange data

Necessary network functionality

- Specify remote machine
- 2. Connect to it (possibly some handshaking)
- 3. Transfer data
- Close connection

More on processes

Process: program in execution

your machine has many processes running on it

"top" command (or type "ps auxwww" in terminal)

```
Processes: 533 total, 3 running, 530 sleeping, 4091 threads
                                                                       11:45:39
Load Avg: 1.57, 1.96, 2.44 CPU usage: 14.31% user, 14.31% sys, 71.36% idle
SharedLibs: 196M resident, 46M data, 17M linkedit.
MemRegions: 256976 total, 5317M resident, 135M private, 2227M shared.
PhysMem: 15G used (3423M wired), 1203M unused.
VM: 2492G vsize, 627M framework vsize, 52872168(189) swapins, 55781927(0) swapouts.
Networks: packets: 32240950/23G in, 20824902/2706M out.
Disks: 9478634/359G read, 3501804/297G written.
PID
                                     #WQ #PORT MEM
      COMMAND
                  %CPU TIME
                               #TH
                                                      PURG
                                                            CMPRS
                                                                   PGRP
                                                                        PPID
65817
      screencaptur 0.0 00:00.19 6
                                                                   65817 1
                                     4
                                         173
                                               10M
                                                            0B
                                                      444K
65816
      screencaptur 9.7 00:00.36 3
                                     2
                                         58 2548K
                                                      20K
                                                             0B
                                                                   432 432
                                                                   65814 65807
65814
      top 8.8 00:01.98 1/1
                                     0
                                          22
                                               4848K
                                                      0B
                                                            0B
```

Killing processes

Use "ps" to get process id

type ps auxwww | grep NAME

Use "kill" to terminate process

- kill processid
- kill -9 processid // nuclear option: don't let process clean up

Distributed system vs. computer network

Distributed system

software system built on top of computer network

Example

World Wide Web is built on top of Internet
 Distributed system

Computer network

Why build a computer network?

User view

- sharing resources
 - hardware: printers, compute servers, cloud computing
 - software: word, Matlab
 - data: customer records, inventory, financials, p2p file sharing
 - information: web-browsing, Wikipedia, search

- communication

email, text, voIP, screen share, video conference, social network

electronic commerce

online shopping, banking, business

entertainment

multi-user network games, video streaming

Why build a computer network?

Programmer view

- to support distributed applications
 - e.g., web, ftp, ...
- most functionality in software
 - many applications, easy to create
- general-purpose, increasingly faster computers
 - can manage many processes
- new functionality easily added ``inside" network
 - e.g., Content Distribution Net

Why should you care?

Networks of processes are ubiquitous

to support a myriad of distributed applications

Networks are getting larger and more complex

need experts in leveraging & managing them

Number of hosts on Internet

By Kopiersperre (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Many "networking" firsts originated not too far away

First optical (light) "one-if-by-land-and-two-if-by-sea" signals

used to signal that the British are coming in 1775

First telegraph (Morse code)

 used by Boston Fire Alarm Telegraph System for reporting fires in 1852

Paul Revere

First transatlantic radio message

from Nova Scotia to England in 1902

First switches and email message

at BBN in 1967-1972

Guglielmo Marconi

How to build a computer network?

- 1. Need way to connect devices
- 2. Need way to connect processes on devices
- 3. Need way to share-resources efficiently

We'll overview general networks today. But in future our focus will primarily be Internet

Building a Network HOW TO CONNECT DEVICES

Building blocks

Nodes: laptop, server, router, switch, cell phone, UAV, IoT devices, ...

Links: copper wire, coaxial cable, optical fiber, radio, ...

Telephone lines

Ethernet, up to 10

Gbps

Shared/broadcast medium, more people using simultaneously, less bandwidth each gets

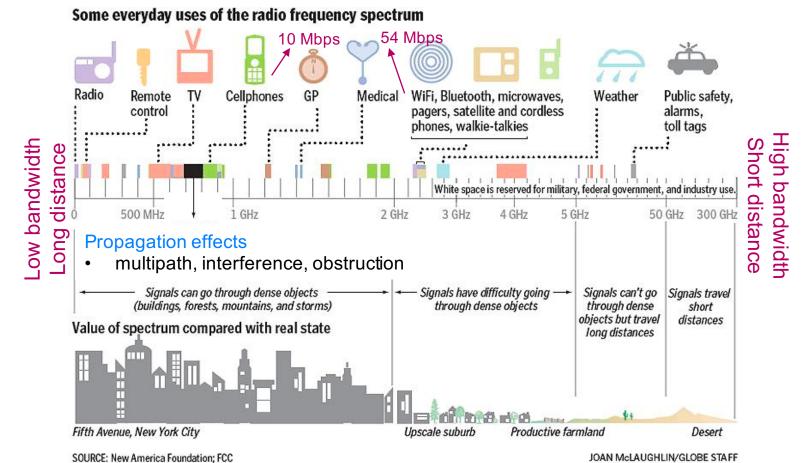
10's of Mbps

Glass fiber carrying light pulses (bits)

Forms Internet core: carries lots of traffic. Low bit error rate since unaffected by electromagnetic. noise

up to 100s of Gbps

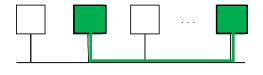
Kbps = 10^3 bits per second Mbps = 10^6 bits per second


Building blocks

Nodes: laptop, server, router, switch, cell phone, UAV, IoT device...

Links: copper wire, coaxial cable, optical fiber, radio,

Signal carried in electromagnetic spectrum hroadcast, medium

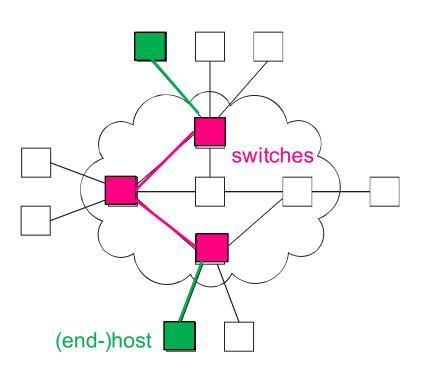

Connecting devices with direct links

Point-to-point

E.g., dial-up, Digital Subscriber Line (DSL))

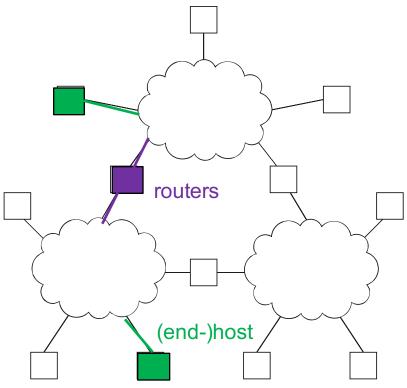
Multiple access

LAN environment


Need MAC (Medium Access Control) protocol

to control access to shared medium. E.g., shared Ethernet, Hybrid Fiber Coaxial (HFC) upstream channel, wireless

Connecting devices with switches and routers


Indirect connectivity

switched network

Internetwork

routers: connect networks

A network can be defined recursively

- 2 or more devices connected by a physical link
- 2 or more networks connected by 2 or more devices

How do devices identify and find each other?

Addressing

address is byte-string that identifies device; usually unique

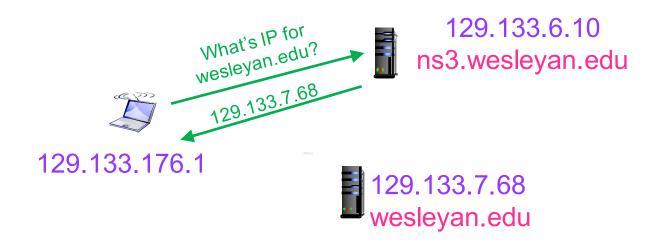
Routing

 algorithm determining how routers forward messages toward destination device based on address

Types of addresses

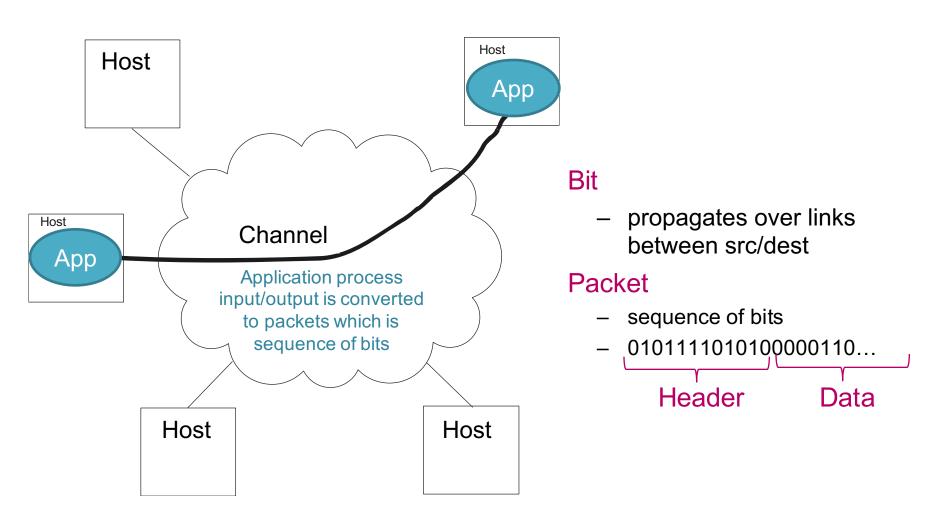
- unicast: device-specific
- broadcast: all devices on network
- multicast: some subset of device on network

Internet addresses example


Every device on Internet has Internet Protocol (IP) address

- string of #s interpretable by computer
- assigned when host joins network connected to Internet

Some IP addresses are associated with a domain name


use equivalent of phone book to do mapping

Building a Network HOW TO CONNECT PROCESSES ON DEVICES

Processes, not devices, are communicating

How do processes running on different devices communicate?

Typical goals for communication channels

Reliable

- no loss, no errors, no duplication, in-order
- for file access and digital libraries

Secure

privacy, authentication, message integrity

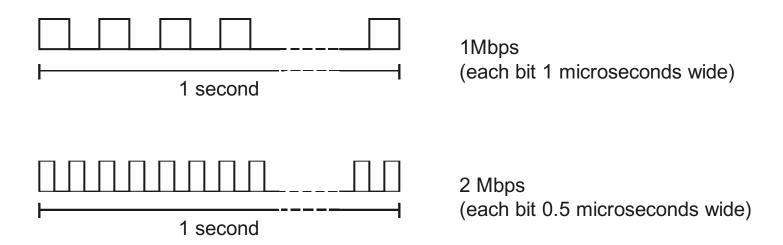
Delay-bounded

for real-time voice and video

What goes wrong in network?

All sorts of things ...

- bit-level errors (electrical interference)
- packet-level errors (bit errors, congestion)
- link and node failures
- packets are delayed
- packets are delivered out-of-order
- third parties eavesdrop


Channel needs to work even when things go wrong

- key problem
 - fill in gap between what applications expect and what underlying technology provides

Quantifying channel performance

Bit Rate (aka throughput aka capacity)

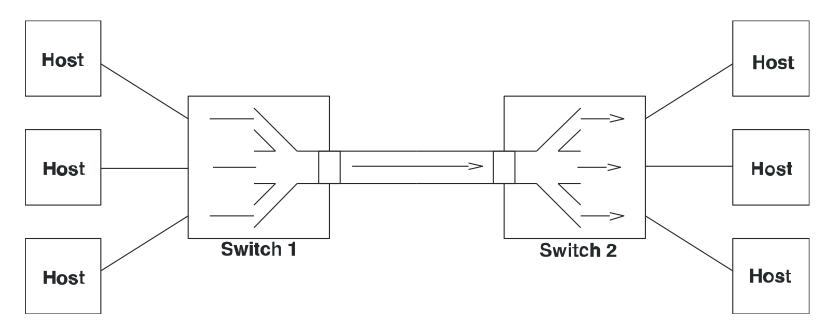
- amount of data that can be transmitted per unit time
 - link versus end-to-end
- measurement units
 - Kbps = 10³ bits per second
 - Mbps = 10⁶ bits per second
 - Gbps = 10⁹ bits per second

Quantifying channel performance

Delay

- time to send packet from host A to host B
 - example: 24 milliseconds (ms)
 - sometimes interested in round-trip time (RTT)
 - include time to get reply back from host B
- components
 - Total Delay = Processing + Propagation + Transmission + Queue
 - Propagation Delay = Distance / SpeedOfLight
 - Transmission Delay = Packet length / Bit Rate
- speed of light
 - 3.0 x 10⁸ meters/second in a vacuum
 - 2.3 x 10⁸ meters/second in a cable
 - 2.0 x 10⁸ meters/second in a fiber

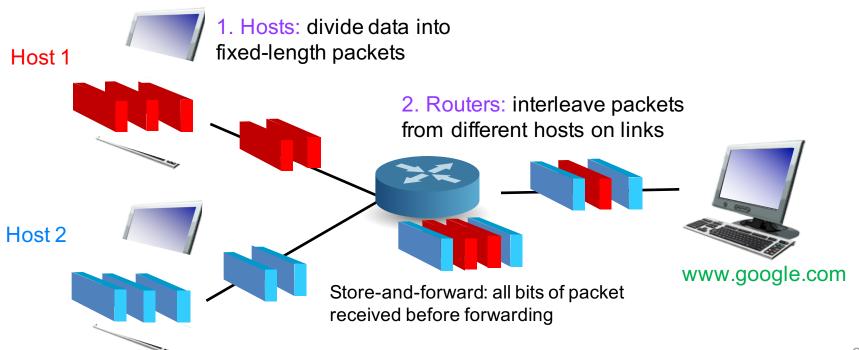
Building a Network HOW TO SHARE RESOURCES


Sharing network resources

Devices and links

must be shared (multiplexed) among multiple users

Common Multiplexing Strategies


- Frequency-Division Multiplexing (FDM): pre-assign frequencies
- Time-Division Multiplexing (TDM): pre-assign time slots

Multiplexing strategy used on Internet

Statistical Multiplexing

- time-division, but on demand rather than fixed (no waste)
 - reschedule link on per-packet basis
 - packets from different sources interleaved on link
- buffer overflow causing packet drops (loss), is called congestion

