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Abstract

We address the problem of adaptive sensor control in dynamic resource-
constrained sensor networks. We focus on a meteorological sensing network com-
prising radars that can perform sector scanning rather than always scanning360◦.
We compare three sector scanning strategies. The sit-and-spin strategy always
scans360◦. The limited lookahead strategy additionally uses the expected envi-
ronmental stateK decision epochs in the future, as predicted from Kalman filters,
in its decision-making. The full lookahead strategy uses all expected future states
by casting the problem as a Markov decision process and using reinforcement
learning to estimate the optimal scan strategy. We show that the main benefits of
using a lookahead strategy are when there are multiple meteorological phenomena
in the environment, and when the maximum radius of any phenomenon is suffi-
ciently smaller than the radius of the radars. We also show that there is a trade-off
between the average quality with which a phenomenon is scanned and the number
of decision epochs before which a phenomenon is rescanned.

1 Introduction

Traditionally, meteorological radars, such as the National Weather Service NEXRAD system, are
tasked to always scan 360 degrees. In contrast, the Collaborative Adaptive Sensing of the Atmo-
sphere (CASA) Engineering Research Center [5] is developing a new generation of small, low-power
but agile radars that can perform sector scanning, targeting sensing when and where the user needs
are greatest. Since all meteorological phenomena cannot be now all observed all of the time with
the highest degree of fidelity, the radars must decide how best to perform scanning. While we fo-
cus on the problem of how to perform sector scanning in such an adaptive meteorological sensing
network, it is an instance of the larger class of problems of adaptive sensor control in dynamic
resource-constrained sensor networks.

Given the ability of a network of radars to perform sector scanning, how should scanning be adapted
at each decision epoch? Any scan strategy must consider, for each scan action, both the expected
quality with which phenomena would be observed, and the expected number of decision epochs
before which phenomena would be first observed (for new phenomena) or rescanned, since not all
regions are scanned every epoch under sectored scanning. Another consideration is whether to opti-
mize myopically only over current and possibly past environmental state, or whether to additionally
optimize over expected future states. In this work we examine three methods for adapting the radar
scan strategy. The methods differ in the information they use to select a scan configuration at a
particular decision epoch. The sit-and-spin strategy of always scanning 360 degrees is indepen-
dent of any external information. The limited lookahead strategies additionally use the expected
environmental stateK decision epochs in the future in its decision-making. Finally, the full looka-
head strategy has an infinite horizon: it uses all expected future states by casting the problem as a
Markov decision process and using reinforcement learning to estimate the optimal scan strategy. All
strategies, excluding sit-and-spin, work by optimizing the overall “quality” (a term we will define
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precisely shortly) of the sensed information about phenomena in the environment, while restricting
or penalizing long inter-scan intervals.

Our contributions are two-fold. We first introduce the meteorological radar control problem and
show how to constrain the problem so that it is amenable to reinforcement learning methods. We
then identify conditions under which the computational cost of an infinite horizon radar scan strategy
such as reinforcement learning is necessary. With respect to the radar meteorological application,
we show that the main benefits of considering expected future states are when there are multiple
meteorological phenomena in the environment, and when the maximum radius of any phenomenon
is sufficiently smaller than the radius of the radars. We also show that there is a trade-off between
the average quality with which a phenomenon is scanned and the number of decision epochs before
which a phenomenon is rescanned. Finally, we show that for some environments, a limited looka-
head strategy is sufficient. In contrast to other work on radar control (see Section 5), we focus on
tracking meteorological phenomena and the time frame over which to evaluate control decisions.

The rest of this paper is organized as follows. Section 2 defines the radar control problem. Section
3 describes the scan strategies we consider. Section 4 describes our evaluation framework and
presents results. Section 5 reviews related work on control and resource allocation in radar and
sensor networks. Finally, Section 6 summarizes this work and outlines future work.

2 Meteorological Radar Control Problem

Meteorological radar sensing characteristics are such that the smaller the sector that a radar scans
(until a minimum sector size is reached), the higher the quality of the data collected, and thus, the
more likely it is that phenomena located within the sector are correctly identified [2]. The multi-
radar meteorological control problem is then as follows. We have a set of radars, with fixed locations
and possibly overlapping footprints. Each radar has a set of scan actions from which it chooses. In
the simplest case, a radar scan action determines the size of the sector to scan, the start angle, the
end angle, and the angle of elevation. We will not consider elevation angles here. Our goal is
to determine which scan actions to use and when to use them. An effective scanning strategy must
balance scanning small sectors (thus implicitlynotscanning other sectors), to ensure that phenomena
are correctly identified, with scanning a variety of sectors, to ensure that no phenomena are missed.

We will evaluate the performance of different scan strategies based on inter-scan time, quality, and
cost. Inter-scan time is the number of decision epochs before a phenomenon is either first observed
or rescanned; we would like this value to be below some threshold. Quality measures how well a
phenomenon is observed, with quality depending on the amount of time a radar spends sampling
a voxel in space, the degree to which a meteorological phenomena is scanned in its (spatial) en-
tirety, and the number of radars observing a phenomenon; higher quality scans are better. Cost is
a meta-metric that combines inter-scan time and quality, and that additionally considers whether a
phenomenon was never scanned. The radar control problem is that of dynamically choosing the scan
strategy of the radars over time to maximize quality while minimizing inter-scan time.

3 Scan Strategies

We define aradar configurationto be the start and end angles of the sector to be scanned by an
individual radar for a fixed interval of time. We define ascan actionto be a set of radar configurations
(one configuration for each radar in the meteorological sensing network). We define ascan strategy
to be an algorithm for choosing scan actions. In Section 3.1 we define the quality function associated
with different radar configurations and in Section 3.2 we define the quality functions associated with
different scan strategies.

3.1 Quality Function

The quality function associated with a given scan action was proposed by radar meteorologists in [5]
and has two components. There is a quality componentUp associated with scanning a particular
phenomenonp. There is also a quality componentUs associated with scanning a sector, which is
independent of any phenomena in that sector. Letsr be the radar configuration for a single radarr
and letSr be the scan action under consideration. From [5], we compute the qualityUp(p, Sr) of
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Figure 1: Step functions used by theUp andUs quality functions, from [9]

scanning a phenomenonp using scan actionSr with the following equations,

Up(p, sr) = Fc (c(p, sr))×
[
βFd (d(r, p)) + (1− β)Fw

(
w(sr)
360

) ]
Up(p, Sr) = maxsr∈Sr [Up(p, sr)] (1)

where

w(sr) = size of sectorsr scanned byr

a(r, p) = minimal angle that would allowr to coverp

c(p, sr) =
w(sr)
a(r, p)

= coverage ofp by r scanningsr

h(r, p) = distance fromr to geometric center ofp

hmax(r) = range of radarr

d(r, p) =
h(r, p)
hmax(r)

= normalized distance fromr to p

β = tunable parameter

Up(p, Sr) is the maximum quality obtained for scanning phenomenonp over all possible radars and
their associated radar configurationssr. Up(p, sr) is the quality obtained for scanning phenomenon
p using a specific radarr and radar configurationsr. The functionsFc(·), Fw(·), andFd(·) from [5]
are plotted in Figure 1.Fc captures the effect on quality due to the percentage of the phenomenon
covered; to usefully scan a phenomenon, at least 95% of the phenomenon must be scanned.Fw
captures the effect of radar rotation speed on quality; as rotation speed is reduced, quality increases.
Fd captures the effects of the distance from the radar to the geometrical center of the phenomenon on
quality; the further away the radar center is from the phenomenon being scanned, the more degraded
will be the scan quality due to attenuation. Due to theFw function, the quality functionUp(p, sr)
outputs the same quality for scan angles of181◦ to 360◦. The qualityUs(ri, sr) for scanning a
subsectori of radarr scanned using configurationsr is,

Us(ri, sr) = Fw

(
w(sr)
360

)
(2)

Intuitively, a sector scanning strategy is only preferable when the quality function is such that the
quality gained for scanning a sector is greater than the quality lost for not scanning another sector.

3.2 Scan Strategies

We compare the performance of the following three scan strategies. The strategies differ in whether
they optimize quality over only current or also future expected states. For example, suppose a storm
cell is about to move into a high-quality multi-doppler region (i.e., the area where multiple radar
footprints overlap). By considering future expected states, a lookahead strategy can anticipate this
event and have all radars focused on the storm cell when it enters the multi-doppler region, rather
than expending resources (with little “reward”) to scan the storm cell just before it enters this region.

(i) Sit-and-spin strategy.All radars always scan360◦.

(ii) Limited “lookahead” strategy.We examine both a 1-step and a 2-step look-ahead scan strategy.
Although we do not have an exact model of the dynamics of different phenomena, to perform the
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look-ahead we estimate the future attributes of each phenomenon using a separate Kalman filter. For
each filter, the true statex is a vector comprising the(x, y) location and velocity of the phenomenon,
and the measurementy is a vector comprising only the(x, y) location. The Kalman filter assumes
that the state at timet is a linear function of the state at timet − 1 plus some Gaussian noise, and
that the measurement at timet is a linear function of the state at timet plus some Gaussian noise. In
particular,xt = Axt−1 +N [0,Q] andyt = Bxt +N [0,R].

Following work by [8], we initialize each Kalman filter as follows. TheA matrix reflects that storm
cells typically move to the north-east. TheB matrix, which when multiplied withxt returnsxt,
assumes that the observed stateyt is directly the true statext plus some Gaussian noise. TheQ
matrix assumes that there is little noise in the true state dynamics. Finally, the measurement error
covariance matrixR is a function of the qualityUp with which phenomenonp was scanned at time
t. We discuss how to compute theσt’s in Section 4. We use the first location measurement of a
storm celly0, augmented with the observed velocity, as the the initial statex0. We assume that our
estimate ofx0 has little noise and use.0001 ∗ I for the initial covarianceP0.

A =

[
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

]
, B =

[
1 0 0 0
0 1 0 0

]
,Q =

[
.0001 0 0 0

0 .0001 0 0
0 0 .0001 0
0 0 0 .0001

]
, R =

[
σt 0
0 σt

]

We compute thek-step look-ahead quality for different sets of radar configurationsSr with,

UK(Sr,1|Tr) =
K∑
k=1

φk−1

Np∑
i=1

Up(pi,k, Sr,k|Tr)

whereNp is the number of phenomena in the environment in the current decision epoch,pi,0 is
the current set of observed attributes for phenomenoni, pi,k is thek-step set of predicted attributes
for phenomenoni, Sr,k is the set of radar configurations for thekth decision epoch in the future,
andφ is a tunable discount factor between 0 and 1. The optimal set of radar configurations is
thenS∗r,1 = argmaxSr,1UK(Sr,1|Tr). To account for the decay of quality for unscanned sectors
and phenomena, and to consider the possibility of new phenomena appearing, we restrictSr to be
those scan actions that ensure that every sector has been scanned at least once in the lastTr decision
epochs.Tr is a tunable parameter whose purpose is to satisfy the meteorological dictate found in [5],
that all sectors be scanned, for instance by a360◦ scan, at most every 5 minutes.

(iii) Full “lookahead” strategy. We formulate the radar control problem as a Markov decision
process (MDP) and use reinforcement learning to obtain a lookahead scan strategy as follows. While
a POMDP (partially observable MDP) could be used to model the environmental uncertainty, due to
the cost of solving a POMDP with a large state space [9], we choose to formulate the radar control
problem as an MDP with quality (or uncertainty) variables as in an augmented MDP [6].

S is the observed state of the environment.The state is a function of the observed number of storms,
the observedx, y velocity of each storm, and the observed dimensions of each storm cell given by
x, y center of mass and radius. To model the uncertainty in the environment, we additionally define
as part of the state quality variablesup andus based on theUp andUs quality functions defined
in Equations (1) and (2) in Section 3.1.up is the qualityUp(·) with which each storm cell was
observed, andus is the current qualityUs(·) of each90◦ subsector, starting at 0, 90, 180, or270◦.

A is the set of actions available to the radars.This is the set of radar configurations for a given
decision epoch. We restrict each radar to scanning subsectors that are a multiple of90◦, starting at
0, 90, 180, or270◦. Thus, with N radars there are13N possible actions at each decision epoch.

The transition functionT (S×A×S)→ [0, 1] encodes theobservedenvironment dynamics: specif-
ically the appearance, disappearance, and movement of storm cells and their associated attributes.
For meteorological radar control, the next state really is a function of not just the current state but
also the action executed in the current state. For instance, if a radar scans 180 degrees rather than
360 degrees, then any new storm cells that appear in the unscanned areas will not be observed. Thus,
the new storm cells that will be observed will depend on the scanning action of the radar.

The cost functionC(S,A, S)→ R encodes the goals of the radar sensing network.C is a function
of the error between the true state and the observed state, whether all storms have been observed,

4



and a penalty term for not rescanning a storm withinTr decision epochs. More precisely,

C =
Nop∑
i=1

Nd∑
j=1

|doij − dij |+ (Np −No
p )Pm +

Np∑
i=1

I(ti)Pr (3)

whereNo
p is the observed number of storms,Nd is the number of attributes per storm,doij is the

observed value of attributej of stormi, dij is the true value of attributej of stormi, Np is the true
number of storms,Pm is the penalty for missing a storm,ti is the number of decision epochs since
stormi was last scanned,Pr is the penalty for not scanning a storm at least once withinTr decision
epochs, andI(ti) is an indicator function that equals 1 whenti ≥ Tr. The quality with which a
storm is observed determines the difference between the observed and true values of its attributes.

We use linear Sarsa(λ) [15] as the reinforcement learning algorithm to solve the MDP for the radar
control problem. To obtain the basis functions, we use tile coding [13, 14]. Rather than defining
tilings over the entire state space, we define a separate set of tilings for each of the state variables.

4 Evaluation

4.1 Simulation Environment

We consider radars with both 10 and 30km radii as in [5, 17]. Two overlapping radars are placed
in a 90km× 60km rectangle, one at (30km, 30km) and one at (60km, 30km). A new storm cell
can appear anywhere within the rectangle and a maximum number of cells can be present on any
decision epoch. When the(x, y) center of a storm cell is no longer within range of any radar, the
cell is removed from the environment. Following [5], we use a 30-second decision epoch.

We derive the maximum storm cell radius from [11], which uses2.83km as “the radius from the cell
center within which the intensity is greater thane−1 of the cell center intensity.” We then permit a
storm cell’s radius to range from1 to 4 km. To determine the range of storm cell velocities, we use 39
real storm cell tracks obtained from meteorologists. Each track is a series of(latitude, longitude)
coordinates. We first compute the differences in latitude and longitude, and in time, between suc-
cessive pairs of points. We then fit the differences using Gaussian distributions. We obtain, in units
of km/hour, that the latitude (orx) velocity has mean 9.1 km/hr and std. dev. of 35.6 km/hr and that
the longitude (ory) velocity has mean 16.7 km/hr and std. dev. of 28.8 km/hr. To obtain a storm
cell’s (x, y) velocity, we then sample the appropriate Gaussian distribution.

To simulate the environment transitions we use a stochastic model of rainfall in which storm cell
arrivals are modeled using a spatio-temporal Poisson process, see [11, 1]. To determine the number
of new storm cells to add during a decision epoch, we sample a Poisson random variable with rate
ληδaδt with λ = 0.075 storm cells/km2 andη = 0.006 storm cells/minute from [11]. From the
radar setup we haveδa = 90 · 60 km2, and from the 30-second decision epoch we haveδt = 0.5
minutes. New storm cells are uniformly randomly distributed in the 90km× 60km region and we
uniformly randomly choose new storm cell attributes from their range of values. This simulates the
true state of the environment over time. The following simplified radar model determines how well
the radars observe the true environmental state under a given set of radar configurations. If a storm
cell p is scanned using a set of radar configurationsSr, the location, velocity, and radius attributes
are observed as a function of theUp(p, Sr) quality defined in Section 3.1.Up(p, Sr) returns a value
u between zero and one. Then the observed value of the attribute is the true value of the attribute
plus some Gaussian noise distributed with mean zero and standard deviation(1− u)V max/ρ where
V max is the largest positive value the attribute can take andρ is a scaling term that will allow us to
adjust the noise variability. Sinceu depends on the decision epocht, for thek-step look-ahead scan
strategy we also useσt = (1 − ut)V max/ρ to compute the measurement error covariance matrix,
R, in our Kalman filter.

We parameterize the MDP cost function as follows. We assume that any unobserved storm cell has
been observed with quality 0, henceu = 0. Summing over(1 − u)V max/ρ for all attributes with
σ = 0 gives the valuePm = 15.5667, and thus a penalty of 15.5667 is received for each unobserved
storm cell. If a storm cell is not seen withinTr = 4 decision epochs a penalty ofPr = 200 is
given. Using the value200 ensures that if a storm cell has not been rescanned within the appropriate
amount of time, this part of the cost function will dominate.
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We distinguish the true environmental state known only to the simulator from the observed environ-
mental state used by the scan strategies for several reasons. Although radars provide measurements
about meteorological phenomena, the true attributes of the phenomena are unknown. Poor over-
lap in a dual-Doppler area, scanning a subsector too quickly or slowly, or being unable to obtain a
sufficient number of elevation scans will degrade the quality of the measurements. Consequently,
models of previously existing phenomena may contain estimation errors such as incorrect velocity,
propagating error into the future predicted locations of the phenomena. Additionally, when a radar
scans a subsector, it obtains more accurate estimates of the phenomena in that subsector than if it
had scanned a full360◦, but less accurate estimates of the phenomena outside the subsector.

4.2 Results

In this section we present experimental results obtained using the simulation model of the previous
section and the scan strategies described in Section 3. For the limited lookahead strategy we use
β = 0.5, κp = 0.25, κs = 0.25, andφ = 0.75. For Sarsa(λ), we use a learning rateα = 0.0005,
exploration rateε = 0.01, discount factorγ = 0.9, and eligibility decayλ = 0.3. Additionally,
we use a single tiling for each state variable. For the(x, y) location and radius tilings, we use
a granularity of 1.0; for the(x, y) velocity, phenomenon confidence, and radar sector confidence
tilings, we use a granularity of 0.1. When there are a maximum of four storms, we restrict Sarsa(λ)
to scanning only 180 or 360 degree sectors to reduce the time needed for convergence. Finally, all
strategies are always compared over the same true environmental state.

Figure 2(a) shows an example convergence profile of Sarsa(λ) when there are at most four storms
in the environment. Figure 2(b) shows the average difference in scan quality between the learned
Sarsa(λ) strategy and sit-and-spin and 2-step strategies. When1/ρ = 0.001 (i.e., little measurement
noise) Sarsa(λ) has the same or higher relative quality than does sit-and-spin, but significantly lower
relative quality (0.05 to 0.15) than does the 2-step. This in part reflects the difficulty of learning
to perform as well as or better than Kalman filtering. Examining the learned strategy showed that
when there was at most one storm with observation noise1/ρ = 0.001, Sarsa(λ) learned to simply
sit-and-spin, since sector scanning conferred little benefit. As the observation noise increases, the
relative difference increases for sit-and-spin, and decreases for the 2-step. Figure 2(c) shows the
average difference in cost between the learned Sarsa(λ) scan strategy and the sit-and-spin and 2-step
strategies for a 30 km radar radius. Sarsa(λ) has the lowest average cost.

Looking at the Sarsa(λ) inter-scan times, Figure 2 (d) shows that, as a consequence of the penalty for
not scanning a storm withinTr = 4 time-steps, while Sarsa(λ) may rescan fewer storm cells within
1, 2, or 3 decision epochs than do the other scan strategies, it scans almost all storm cells within
4 epochs. Note that for the sit-and-spin CDF,P [X ≤ 1] is not 1; due to noise, for example, the
measured location of a storm cell may be (expected) outside any radar footprint and consequently
the storm cell will not be observed. Thus the 2-step has more inter-scan times greater thanTr = 4
than does Sarsa(λ). Together with Figure 2(b) and (c), this implies that there is a trade-off between
inter-scan time and scan quality. We hypothesize that this trade-off occurs because increasing the
size of the scan sectors ensures that inter-scan time is minimized, but decreases the scan quality.

Other results (not shown, see [7]) examine the average difference in quality between the 1-step and 2-
step strategies for 10 km and 30 km radar radii. With a 10 km radius, the 1-step quality is essentially
the same as the 2-step quality. We hypothesize that this is a consequence of the maximum storm cell
radius, 4 km, relative to the 10 km radar radius. With a 30 km radius and at most eight storm cells,
the 2-step quality is about 0.005 better than the 1-step and about 0.07 better than sit-and-spin (recall
that quality is a value between 0 and 1). Now recall that Figure 2(b) shows that with a 30 km radius
and at most four storm cells, the 2-step quality is as much as 0.12 than sit-and-spin. This indicates
that there may be some maximum number of storms above which it is best to sit-and-spin.

Overall, depending on the environment in which the radars are deployed, there are decreasing
marginal returns for considering more than 1 or 2 future expected states. Instead, the primary value
of reinforcement learning for the radar control problem is balancing multiple conflicting goals, i.e.,
maximizing scan quality while minimizing inter-scan time. Implementing the learned reinforcement
learning scan strategy in a real meteorological radar network requires addressing the differences be-
tween the offline environment in which the learned strategy is trained, and the online environment
in which the strategy is deployed. Given the slow convergence time for Sarsa(λ) (on the order of
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Figure 2: Comparing the scan strategies based on quality, cost, and inter-scan time. Recall thatρ is
a scaling term used to determine measurement noise, see Section 4.1.

days), training solely online is likely infeasible, although the time complexity could be mitigated
by using hierarchical reinforcement learning methods and semi-Markov decision process. Some
online training could be achieved by treating360◦ scans as the true environment state. Then when
unknown states are entered, learning could be performed, alternating between360◦ scans to gauge
the true state of the environment and exploratory scans by the reinforcement learning algorithm.

5 Related Work

Other reinforcement learning applications in large state spaces include robot soccer [12] and heli-
copter control [10]. With respect to radar control, [4] examines the problem of using agile radars
on airplanes to detect and track ground targets. They show that lookahead scan strategies for radar
tracking of a ground target outperform myopic strategies. In comparison, we consider the problem of
tracking meteorological phenomena using ground radars. [4] uses an information theoretic measure
to define the reward metric and proposes both an approximate solution to solving the MDP Bellman
equations as well as a Q-learning reinforcement learning-based solution. [16] examines where to
target radar beams and which waveform to use for electronically steered phased array radars. They
maintain a set of error covariance matrices and dynamical models for existing targets, as well as

7



track existence probability density functions to model the probability that targets appear. They then
choose the scan mode for each target that has both the longest revisit time for scanning a target and
error covariance below a threshold. They do this for control 1-step and 2-steps ahead and show
that considering the environment two decision epochs ahead outperforms a 1-step look-ahead for
tracking of multiple targets.

6 Conclusions and Future Work

In this work we compared the performance of myopic and lookahead scan strategies in the context
of the meteorological radar control problem. We showed that the main benefits of using a lookahead
strategy are when there are multiple meteorological phenomena in the environment, and when the
maximum radius of any phenomenon is sufficiently smaller than the radius of the radars. We also
showed that there is a trade-off between the average quality with which a phenomenon is scanned
and the number of decision epochs before which a phenomenon is rescanned. Overall, considering
only scan quality, a simple lookahead strategy is sufficient. To additionally consider inter-scan time
(or optimize over multiple metrics of interest), a reinforcement learning strategy is useful. For future
work, rather than identifying a policy that chooses the best action to execute in a state for a single
decision epoch, it may be useful to consider actions that cover multiple epochs, as in semi-Markov
decision processes or to use controllers from robotics [3]. We would also like to incorporate more
radar and meteorological information into the transition, measurement, and cost functions.
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