
Dynamic Routing and Post-processing Strategies for
Hybrid Quantum Key Distribution Networks

Omar Amer∗, Walter O. Krawec†, Md Zakir Hossain†, Victoria U. Manfredi‡, Bing Wang†

∗Global Technology Applied Research, JPMorgan Chase Bank, New York City, NY, United States
†School of Computing, University of Connecticut, Storrs, CT, United States

‡Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, United States

Abstract—In this paper, we consider hybrid quantum key
distribution (QKD) networks with primarily quantum repeaters
and a small number of trusted nodes. While the trusted nodes
need to be trusted, the use of such nodes, together with efficient
routing algorithms, can significantly improve the key generation
rate. We show that when trusted nodes are placed at asymmetric
locations relative to Alice and Bob, however, existing routing
algorithms can lead to low key rate. To address this issue, we
develop dynamic routing strategies that adjust routing decisions
based on the current key pool conditions in the network. In
addition, we investigate new and existing classical post-processing
techniques that complement the dynamic routing strategies.
Using extensive simulations, we show that our dynamic routing
strategies can significantly outperform static strategies, and the
post-processing techniques are beneficial in high noise scenarios.
In addition, combining the dynamic routing strategies and post-
processing techniques can further improve the overall key rate.

I. INTRODUCTION

Quantum key distribution (QKD) allows two parties, Alice
and Bob, to establish a shared secret key, secure against
computationally unbounded adversaries [1]. Despite the great
potential of QKD, however, numerous challenges remain. Of
particular importance is improving the overall key generation
rate while also supporting large distances between two parties.
Quantum networks provide a promising direction in improving
key generation rate over long distance.

To date, the majority of research in quantum networks spans
two directions: the study of networks consisting of only trusted
nodes (TNs) [2]–[13], and the study of networks consisting of
only quantum repeaters, i.e., a true quantum internet [14]–[16].
These two directions represent the two extreme end-points
of the timeline in quantum network development. Quantum
repeaters allow for two end-points to perform entanglement
swapping, allowing them to establish Bell pairs even if the
repeater is controlled by an adversary. This provides a tremen-
dously strong security guarantee. However, the technological
requirements of a quantum repeater still surpass today’s en-
gineering capabilities, especially in terms of their need for
short-term quantum memories. TNs, on the other hand, are
available today and are used in most of the current large-
scale metro-area QKD networks (e.g., Vienna [17], Hefei [18],
Beijing-Shanghai [19], and Tokyo [20]). This is due to the fact
that TNs simply behave like Alice or Bob, and perform actual
key distribution. That is, they do not require any quantum

storage but only classical storage. The downside of TNs, as
their name implies, is that they must be trusted as they will
have full information on the final secret key.

In this paper, we consider hybrid near-future quantum
networks that have a majority of quantum repeaters and
only a small number of TNs that are physically secure (or
secured through other means). The reason for focusing on such
networks is because they achieve a better tradeoff in terms of
security and performance, compared to other alternatives such
as quantum-repeater-only or TN-only networks, or a network
with majority as TNs and a small number of repeaters. First,
the security of such QKD networks follows from the strong se-
curity guarantee of the quantum repeaters, the physical security
of the TNs, and the perfect security of using one-time pad for
transferring secret keys among TNs (see Section II). Second,
such networks are efficient and practical. The study in [21]
shows that even a small number of TNs can significantly
improve the key generation rate compared to a quantum-
repeater-only network, and securing a small number of TNs
incurs much less cost than securing a large number of TNs
in a TN-only network or a network with majority nodes as
TNs. Overall, the above hybrid QKD networks, though not as
powerful as the true future quantum internet, provide a realistic
middle-ground between today’s TN-based QKD networks and
the true future quantum internet.

In such hybrid quantum networks, the placement of the TNs
can significantly affect the key generation rate. TNs may not
always be placed at symmetric locations between Alice and
Bob, as assumed in [21]. This is because a quantum network
may reuse an existing optical fiber infrastructure, and the
locations of the TNs may be constrained by the need to provide
physical security. In addition, the locations of Alice and Bob
may change over time. We show that the routing algorithm
proposed in [21] does not perform well under asymmetric TN
placement. To address this issue, we develop dynamic routing
strategies that adjust routing decisions based on the current
key pool conditions in the network. The dynamic routing
strategies, however, can lead to long and more diverse net-
work paths. We therefore further investigate new and existing
classical post-processing techniques to complement the above
dynamic routing strategies. Our work makes the following
main contributions:

1



end user or trusted node (TN)

Alice Bob

Alice
Bob

TN1
TN2

TN1 TN2

QKD network

TN-overlay network

quantum repeater

Fig. 1. Hybrid network architecture with quantum repeaters and a small
number of TNs. The lower part of the figure shows the QKD network, and
the upper part shows the TN-overlay network.

� We develop dynamic routing strategies for hybrid quantum
networks that contains a majority of quantum repeaters and
a small number of TNs (§III). This strategy runs on top of
an existing routing algorithm and makes routing decisions in
each network round based on the current key pool conditions,
specifically, the current amount of secret key bits among the
users and TNs, to maximize key generation rate for end users.

� We propose a new classical post-processing technique in-
volving dynamic pooling of raw key bits into distinct blocks
based on network characteristics, e.g., path lengths (§IV). In
addition, we employ existing classical advantage distillation
(CAD) [22] techniques, adapting the CAD parameters ap-
propriately for each distinct key pool. These post-processing
techniques are broadly relevant to other QKD systems, not
only hybrid QKD networks.

� We perform extensive evaluation of the dynamic routing
strategies and post-processing techniques in a wide range of
network scenarios (§V and §VI). Our results show that the
dynamic routing strategies can significantly outperform the
standard static strategy, and the post-processing techniques are
beneficial in high noise scenarios. In addition, combining the
dynamic routing strategies and the post-processing techniques
can further improve the overall key rate. As an example, we
show that, with the post-processing techniques, the dynamic
routing strategies can improve the key rate up to 23% over the
static strategy in random graph networks.

II. NETWORK MODEL

We consider a hybrid quantum network as illustrated in the
lower part of Fig. 1. This network is modeled as a graph with
each node representing either an end user (Alice or Bob who
wish to establish a shared secret key), a TN, or a quantum
repeater. End users and TNs are denoted T0; T1; � � � ; Tn; Tn+1,
with T0 being Alice, Tn+1 being Bob, and all other Ti being
TNs. Each pair Ti and Tj have a raw key pool, denoted RKi;j ,
and a secret key pool, denoted SKi;j , storing shared key
material between those nodes. The raw key consists of shared
key bits before classical post-processing steps (error correction

and privacy amplification) are run, whereas the secret key
consists of secret key bits following the completion of these
classical post-processing steps.

Each edge in this graph connecting two nodes represents
a fiber link allowing for the transmission of qubits between
nodes; this link may be noisy and lossy. We assume that all
nodes have a quantum memory capable of storing a single
qubit for every adjacent node. But this qubit can be stored
only for a short amount of time due to short quantum memory
coherence time [23], after which it must be discarded. In
particular, the qubit can only be stored for a single network
round; see later. The memory may also be noisy, causing the
state to decohere with a certain probability.

As in [21], [24], [25], we assume the nodes in the network
have synchronized clocks and the network operates in rounds.
Each round is divided into three stages, for completing the
quantum portion of QKD over the quantum network. After
a sufficient number of rounds, classical post-processing is
conducted to obtain secret key between Alice and Bob. We
next briefly describe these steps.
Stage 1 (link-level entanglement establishment). In this
stage, each pair of connected nodes, u and v, in the quantum
network attempts to share half of an entangled pair with
each other over the fiber link. This process succeeds with
probability P = 10��L=10, where L is the length of the
fiber link connecting u and v, and � is a constant [26]–[28].
Otherwise, the qubit is lost and no shared entanglement is
established in this round. In addition, even when entanglement
is established successfully, we assume with probability D, the
entanglement may depolarize and become a completely mixed
state, due to noise in the link, memory system, or both. Thus, at
the end of this stage, with probability P , each pair of neighbors
u; v share the state

�u;v = (1�D) j�+i h�+j+D
I

4
; (1)

where j�+i = 1p
2

(j00i+ j11i) and I is the identity matrix.
Otherwise, with probability 1� P , those neighbors share the
vacuum state (i.e., they share no state). We assume nodes are
able to determine whether they have a vacuum or not, while
they cannot determine if the state is the desired Bell state j�+i
or a completely mixed state.
Stage 2 (entanglement routing). In this stage, a routing
algorithm is executed (see Section III) to create end-to-end
entanglement between nodes Ti and Tj . Specifically, the
routing algorithm will determine a set of paths, each ending
with Ti and Tj , and has only quantum repeaters as interior
nodes. These paths will be used by the repeaters to attempt
to create an entangled pair between Ti and Tj by performing
Bell statement measurement (BSM), also called entanglement
swapping, at each repeater in the path. If successful, this
will create a long-distance end-to-end shared entangled state
between Ti and Tj . Since two different paths cannot rely on
a single qubit, these paths must be disjoint in their use of the
available stored qubits. As in the first stage, we assume nodes
Ti and Tj will know whether this path entanglement attempt

2



was successful or not; however, they do not know if the state
is the desired Bell state j�+i or not.

In more detail, given a path Ti ! u1 ! � � � ! u‘ ! Tj
consisting of ‘ repeaters, each repeater, ui, will perform a
BSM on its respective half of the shared state �ui;ui+1

, see
Eq. (1). This succeeds, independently for each repeater, with
probability R. Therefore, with probability R‘, nodes Ti and
Tj share a state of the form:

�Ti;Tj
= (1�D)‘+1 j�+i h�+j+

�
1� (1�D)‘+1

� I
4

(2)

where D is decoherence rate as described in Stage 1. Other-
wise, with probability 1 � R‘, nodes Ti and Tj do not share
a quantum state from this path.

Note that, unlike routing in entanglement networks, here
we have several interesting optimization decisions unique to
our scenario. Primarily, our goal is to maximize the secret
key generation rate between T0 and Tn+1. Maximizing the
number of shared states or raw key bits between any Ti and
Tj does not necessarily lead to maximal secret key generation
rate between T0 and Tn+1, as we will show later. Thus, new
methods are required to fully harness the capabilities of this
network. In Section III, we show that static routing strategies
such as in existing work [21] are not sufficient when the TNs
are placed at asymmetric locations; we then develop dynamic
routing strategies that outperform static strategies.
Stage 3 (raw key generation). In this stage, with entangle-
ment shared, each pair Ti and Tj can conduct the quantum
portion of their chosen entanglement based QKD protocol, in
our case the E91 protocol [29]. If the two parties select the
same randomly chosen basis, which occurs with probability
1=2, the two parties add the resultant raw key bit to their raw
key pool RKi;j . Otherwise, no addition to their raw key pools
is made. At the end of this stage, all remaining qubits in the
system are discarded, as we assume quantum memories can
only store qubits for a single network round. The network then
repeats the above three stages for the next round.
Post-processing. When the network has been running for a
sufficient number of rounds, post-processing is executed. Here,
error correction and privacy amplification are run between
nodes Ti and Tj , adding secret key material to SKi;j . As we
are interested only in the asymptotic performance in this paper,
we assume perfect error correction and use asymptotic key
rates for the E91 protocol. In particular, this means if the error
rate in RKi;j is Qi;j , then jSKi;j j = jRKi;j j(1 � 2h(Qi;j))
[30], [31], where h(x) = �x log x� (1� x) log(1� x) is the
binary entropy function.

Finally, since the ultimate goal of the network is for Alice
and Bob to share as much secret key material as possible, this
last step is to push secret key material from each SKi;j to
SK0;n+1 (i.e., the secret key pools of Alice and Bob). For this
purpose, we consider the TN-overlay network as illustrated in
the upper part of Fig. 1. We refer to it as TN-overlay network
since it only consists of the TNs and end users (Alice and
Bob), and is an overlay on top of the quantum network. In the
TN-overlay network, the capacity between parties i; j is the

number of secret key bits, jSKi;j j, between them. As in [21],
we can then use standard max-flow techniques [32] to find a
maximal flow of secret key material from Alice to Bob over
the TN-overlay network. Here, sending x bits from party i
through party j to party k signifies that TN j publishes the
XOR of the first x bits of SKi;j and SKj;k, allowing party k
to recover the value SKi;j . At the end of this, we will have
succeeded in pushing the maximal amount of key material to
Alice and Bob, maximizing jSK0;n+1j. The above process of
transmitting the XOR of two secret keys in the TN-overlay
network is equivalent to encrypting one of the keys with one-
time pad and thus is perfectly secure [33], [34].

Our main performance metric is the final secret key gener-
ation rate (key rate) between Alice and Bob, namely the ratio
jSK0;n+1j=N , where N is the total number of network rounds
simulated. We note that, in the above, it is possible that some
TNs have leftover secret key material that cannot be pushed
to Alice and Bob, causing waste. Our main contributions in
this work are developing dynamic routing strategies to balance
network operation to identify and avoid such inefficiencies,
and developing post-processing techniques complementary to
such dynamic strategies to further improve key rate.

III. DYNAMIC ROUTING STRATEGIES

In this section, we first motivate the need for dynamic
routing strategies, and then describe our proposed strategies.
A. The Need for Dynamic Routing Strategies

We use an algorithm in [21] as an example to illustrate the
need for dynamic routing strategies. This algorithm assumes
that link-level entanglement status (i.e., success or not for each
link) at the end of Stage 1 is communicated using classical
channels, is known to all fT0; : : : ; Tn+1g in the network, and
is then used for entanglement routing in Stage 2. Specifically,
the algorithm selects the shortest path (in number of hops)
between any pair of nodes in fT0; : : : ; Tn+1g; recall that T0

and Tn+1 represent Alice and Bob, and T1; : : : ; Tn are TNs.
When two paths of equal length are found, one of them is
selected randomly. Once a path between Ti and Tj is found,
then all the links along the path are removed (since a qubit
can only be used once), and the procedure repeats for the
remaining links until no path can be found.

The above routing algorithm favors shorter paths that tend
to have lower noise and higher success probability, and hence
are more likely to succeed in establishing keys. While it has
been shown to be effective when TNs are placed equally close
to Alice and Bob [21], it can lead to waste in key material
due to its static strategy of always favoring shorter paths.

One example is shown in Fig. 2, where Alice and Bob are
along the diagonal of a grid network. It shows two settings: (i)
1TN-IDEAL, where a single TN, T1, is placed in the center
of the grid, equal distance to Alice and Bob, and (ii) OFF-
CENTER, where a single TN, T 01, is placed along the diagonal,
but closer to Alice than Bob. Assuming each quantum repeater
has BSM success probability of 0.85, each quantum link has
decoherence rate of 0.02 and success probability of 0.96, the
key rate achieved using the above routing algorithm in the

3



A

B

T ′
1

T1

Fig. 2. An example that illustrate the benefits of dynamic routing strategies.
It shows two single-TN settings: 1TN-IDEAL with the TN at T1, and OFF-
CENTER with the TN at T ′

1.

OFF-CENTER setting is 0.037, only 24% of that in the 1TN-
IDEAL setting (i.e., 0.153). This is because in the OFF-CENTER
setting, the shorter distance between Alice and T 01 causes key
establishment between them to be placed at a higher priority,
leading to significantly more secret key bits between Alice
and T 01 than those between T 01 and Bob. The extra key bits,
however, end up being wasted since the final key rate between
Alice and Bob requires keys between Alice and T 01, as well
as between T 01 and Bob.

To resolve the above wastage, a dynamic routing strategy
should identify Ti and Tj pairs that need to be prioritized in
routing to properly balance the key pools in the network to
maximize the key rate between Alice and Bob. Specifically, in
Fig. 2, since the amount of secret keys between T 01 and Bob is
significantly less than that between Alice and T 01, a dynamic
routing strategy will prioritize QKD between T 01 and Bob.
As we shall see in Section V-A, using the dynamic routing
strategies that we develop, the key rate in the OFF-CENTER
setting is increased to 0.066, 78% higher than that under the
static strategy.

B. Dynamic Routing Strategies
Our dynamic routing strategies consider the TN-overlay net-

work of a quantum network (see Fig. 1). Let G denote the TN-
overlay network. That is, G has a set of nodes fT0; : : : ; Tn+1g
and a set of edges f(Ti; Tj)g, where T0 is Alice (A) and
Tn+1 is Bob (B). Let c(Ti; Tj) be the current capacity of
edge (Ti; Tj), which represents the amount of secret key bits
that have been created between nodes Ti and Tj . Note that
this quantity can be easily estimated by tracking which paths
were used to generate the raw key bits between Ti and Tj
and calculating the key rates based on the noise rates of these
paths (see Section II), even if the raw key bits shared between
Ti and Tj have not been actually converted to secret key bits.

We develop two dynamic strategies: one is a basic algorithm
that applies to homogeneous topologies, and the other is an
extended algorithm that applies to general topologies. Both
algorithms run in each network round, using c(Ti; Tj), the
current amount of secret key bits between each Ti and Tj , in
the TN-overlay network G. They have low overhead since G
is small (we consider a small number of TNs in this paper)

and only requires classical communication to obtain c(Ti; Tj).
Specifically, each algorithm contains two steps: (i) locate an
edge in G that has surplus key material, i.e., the maximum
flow between Alice and Bob in the graph is lower than the
capacity of this edge (and hence some key material along this
edge will not be used for establishing keys between Alice
and Bob), and then (ii) determine how best to spread network
resources away from this edge in future rounds. These two
algorithms only take effect when the secret key bits in G are
unbalanced, as described below.

1) Basic Algorithm: In each network round, for step (i),
we identify the edge that has the highest capacity in G. Let
emax = (Ti; Tj) denote this edge and cmax denote its capacity.
For step (ii), we identify edges in G that are under-full and
prioritize them. Specifically, we associate with each edge
(u; v) 2 G a weight du;v , defined as dist(u; v) � �, where
dist(u; v) is the distance (number of hops in the shortest
path) between u and v in the underlying quantum network
and � > 0 is a small constant. We define du;v to be related
to distance since shorter paths are more likely to lead to
successful entanglement distribution as well as less noisy keys.
The subtraction of � in the weight is to favor paths with more
TNs; see below.

With these weights in G, we then identify the shortest
Pmin = A ! Ti � Tj ! B path from Alice to Bob that
includes edge emax = (Ti; Tj)

1. The above shortest path Pmin

is composed of two shortest paths, A ! Ti and Tj ! B.
For each of them, if multiple paths have the same distance,
a path with more TNs is more preferred due to subtraction
of � in the weight definition. After determining Pmin in the
overlay graph G, we identify the edges that are under-full in
Pmin with respect to emax, i.e., any ei on the path such that
(1+�)ci � cmax, where ci is the capacity of edge ei and � � 0
is a pre-determined constant. The choice of � impacts how
often the balancing action (i.e., spreading network resource
away from emax) will be triggered. Setting � too small may
lead to frequent triggering and fluctuations, while setting � too
large may lead to delayed triggering and too much surplus key
material. We experimented with a few choices of � (from 0.01
to 0.20), and set � = 0:15 in the rest of the paper.

Let Euf denote the set of under-full edges identified in the
above. Let cmin denote the capacity of the edge in Euf that has
the lowest capacity. We then prioritize any edges ei 2 Euf so
that ci � (1 + �)cmin for some tolerance value � � 0. We use
� to limit the number of edges to prioritize, and set it to be
a small constant, 0.05, in the rest of the paper. Let Ep denote
this set of edges to be prioritized. Since it is not beneficial
to establish keys between two TNs that are far away from
each other, we remove from Ep all the edges (Tk; T

0
k) with

dist(Tk; T
0
k) � � � dist(A;B), and � 2 (0; 1) is a parameter.

In the rest of the paper, we set � = 0:75 empirically, since it
effectively excludes TN pairs that have no or little key material
from being prioritized.

1For ease of exposition, we assume that there is a single shortest path of this
form; when there are multiple shortest paths, one can be selected at random.

4



Once the set of edges to be prioritized, Ep, is identified, in
step (ii), we simply prioritize the edges (i.e., TN pairs) in Ep
first. When there are no more paths for the edges in Ep, we
fall back to the standard operation, attempting all remaining
node pairs ordered by distance. If there are multiple edges in
Ep, they will be prioritized in a random order.

In the special case where there is a single TN T1 between
Alice and Bob, the above algorithm basically reduces to the
following. It first identifies one edge, (A; T1) or (T1; B), as
emax, and the other edge as emin. If the capacities of these two
edges differ significantly, specifically, (1 + �)cmin � cmax, it
then prioritizes emin until in one round the capacity of emin is
close to that of emax, specifically, when (1 + �)cmin > cmax.

Illustration. We next illustrate the above algorithm using an
example with two TNs. Fig. 3a shows the topology. The two
TNs, T1 and T2, are along the diagonal of the grid; T1 is
closer to A and T2 is closer to B. Suppose that in one round,
entanglements are established along all the links except for the
two links incident to T1 marked in red; see Fig. 3a. Fig. 3b
illustrates the routing decisions with the static routing strategy.
We see that the link-level entanglements are used for A and
T1, and after that, no paths can be used for T1 and T2. In
contrast, with the dynamic routing strategy in Fig. 3c, edge
(T1; T2) is identified as under-full and is prioritized over edge
(A; T1). Two paths, each of length 8, are used for (T1; T2).

In this example, the dynamic routing strategy leads to sig-
nificantly higher key rate than the static strategy. Specifically,
with the static strategy, the two edges (A; T1) and (T2; B)
have secret key rates of 0.651 and 0.332, respectively, while
the edge (T1; T2) is a bottleneck and limits the overall key
rate to 0.081. When using our dynamic routing strategy, we
sacrifice some key rate on both (A; T1) and (T2; B) (dropping
them to 0.408 and 0.219, respectively), while increasing the
secret key rate of the bottleneck edge (T1; T2) to 0.157. As
a result, the overall key rate becomes 0.157, approximately
twice as that with the static routing strategy.

2) Extended algorithm: In the basic algorithm described
above, the weight d(u; v) for edge (u; v) in the TN-overlay
network G depends on the path length (i.e., the number of hops
between u and v in the underlying quantum network). This
is sufficient for a homogeneous topology, e.g., a grid where
the number of edge-disjoint shortest paths between each pair
of nodes is the same (i.e., 2). In less regular graphs, however,
only considering path length may not be sufficient, since some
node pairs may have many more paths than other pairs. We
next extend the basic algorithm to general topologies. The
main changes are in how we define d(u; v) and identify the
edges to prioritize in A! Ti and Tj ! B.

In the extended algorithm, we define the weight d(u; v)
using a heuristic on the estimated secret key rate between
two TNs, u and v. Consider the underlying quantum network,
where we ignore all the TNs (i.e., these nodes and the edges
incident to them), except for u and v. Let ‘min be the length
of the shortest path between u and v. We then consider paths
length from ‘min to ‘min + k to estimate the secret key rate

between u and v, where k � 0 is a predetermined constant.
The choice of k represents a trade-off between complexity and
accuracy: a larger k leads to more paths that are considered
and higher accuracy, at the cost of higher complexity. We use
k = 3 in our simulations in Section VI.

Let nmin be the number of edge-disjoint paths of length
‘min between u and v. Then following the asymptotic key
rate formula for each path (see Section II), these nmin paths
can lead to a total secret key rate of

du;v(‘min) = nmin

�
1� 2h

�
1� (1�D)‘min

2

��
; (3)

where D is the decoherence rate, h(�) is the binary entropy
function, and (1� (1�D)‘min)=2 is the noise rate on a path
of length ‘min, following the depolarizing channel in Eq. (2).

We then remove all the edges in all the paths identified as
above, and repeat the above process to identify edge-disjoint
paths of length (‘min+1), and estimate the key rate from these
paths similarly as in Eq. (3). The above process continues until
we identify and estimate a bound on the key rate from edge-
disjoint paths of length (‘min +k). Then the weight of du;v is
set to

P‘min+k
‘=‘min

du;v(‘), i.e., the sum of the estimated key rates
corresponding to paths of lengths ‘min to ‘min + k obtained
in the above.

With the above weight definition, we now describe how to
identify the edges to prioritize in A ! Ti and Tj ! B. For
ease of exposition, we only describe this for A ! Ti; the
same approach applies to Tj ! B. Consider all the paths in
G, i.e., the TN-overlay network. We select the best path to
be the bottleneck shortest path [35] with respect to this new
weight definition. That is, we identify a path between A and Ti
such that the minimum edge weight along the path is maximal
with respect to the set of possible paths. This path may contain
one or multiple edges in G. We then use the same procedure
described in the basic algorithm to identify Ep, i.e., the set of
edges to prioritize. In the above, finding the bottleneck shortest
path can be accomplished in linear time [35].

The above extended algorithm reduces to the basic algo-
rithm for homogeneous topologies and k = 0 (i.e., based on
the number of hops of the shortest path). For general topolo-
gies, as we shall see in Section VI, it provides better solutions
since the weight for each edge defined above represents the
key generation rate more accurately than path length.

IV. CLASSICAL POST-PROCESSING METHODS

The dynamic routing strategies described earlier, while
reducing the wastage in the network, can also lead to long
paths and paths with more diverse lengths, which can be
detrimental to the final secret key distillation. We next consider
two classical post-processing methods to address the above
issues. The first method, key-pool segmenting, is a new method
to address the heterogeneous noise rates that can be caused by
diverse path lengths. The second method, classical advantage
distillation (CAD) [36], is a well-established concept often
applied to QKD protocols, though we are not aware of any
research evaluating its performance in multi-path quantum

5



A

B

T1

T2

(a) Entanglement status.

A

T1

T2

(b) Static routing strategy.

A

T1

T2

(c) Dynamic routing strategy.

Fig. 3. An example illustrating the different routing decisions by the static and dynamic routing strategies. In (b) and (c), only partial topologies including
A, T1 and T2 are shown.

networks. The above two post-processing techniques can be
beneficial alone, and, as we shall show, combining them can
lead to even larger benefits.

A. Key-pool Segmenting
In standard QKD protocols, one usually assumes that the

quantum channel used to transmit quantum states between
two parties has a certain fidelity, and each raw key bit shared
between these two parties has the same error probability. In
our network, multiple paths can be used to share entanglement
between Ti and Tj , which may not be of the same length.
Therefore, even if each individual link in the network has the
same fidelity, these paths may result in entanglements with
different fidelities. Specifically, in one round, the shortest path
may be used between Ti and Tj , resulting in a key bit with the
lowest possible noise; in another round, maybe only a longer,
noisier path can be used, resulting in a noisier raw key bit.
The key-pool between Ti and Tj therefore is a mixture of key
bits with different noise rates, with the expected noise of the
entire key-pool being a weighted average thereof.

This mixture of key-pools can degrade the overall quality
of the key-pool to the point that the total key rate is reduced
(see example below). To mitigate this impact, we propose a
segmenting approach to post-processing: rather than process
the entire raw key together, we allow the network to segment
the raw key-pool based on the expected noise rate of each
bit, partitioning it into sub-pools with similar expected noise
rates. When two parties wish to transform their raw keys
into secret-keys, they process each sub-pool separately, before
ultimately combining it into a single key-pool. More formally,
consider the scenario where the raw key-pool is divided into
b segments, each segment i = 1; 2; � � � ; b having a noise level
of Qi and accounts for a fraction pi 2 (0; 1] of the original
key pool. Then, asymptotically, we can treat each segment as
an individual key-pool and process it separately, leading to an
ultimate final key rate of 1� 2

Pb
i=1 pih(Qi).

The above method can result in substantial improvement in
key rate in certain networks. Furthermore, it is practical and
easy to implement, as the repeaters can periodically disclose
(through classical channels) their previous routing decisions to
allow parties to discover which paths were used. The lengths
of these paths, assuming relatively static noise profiles on the

links, can then be used to find the expected noise rate of each
bit (if noise levels change over time, one can use channel
tomography to estimate noise levels periodically).

We next present an example, and then show that, in the
asymptotic regime, this segmenting approach results in strictly
better or equal key rates than no segmenting. Consider a raw
key composed of a mixture of two sub-pools, K1 and K2,
where they have an expected noise rate of Q1 = 0:04 and
Q2 = 0:10, and account for p1 = 75% and p2 = 25% of
the total key-pool, respectively. The total average noise rate is
Qavg = 0:055, which leads to a key rate of 1� 2h(Qavg) =
0:385. The key rate with segmenting is simply the weighted
average of the key rate of each sub-pool, resulting in a key
rate of p1[1�2h(Q1)]+p2[1�2h(Q2)] = 0:402, 4:4% higher
than the key rate without segmenting.

In general, the key-pool segmenting approach will never
lead to a lower key rate, and can only improve the asymptotic
key rate when there are at least two key pools with different
noise levels. This is easily seen due to the concavity of
Shannon entropy on the interval [0; 1=2]. In the finite-key
regime, there may be sampling considerations that do not allow
segmenting to guarantee equal or better performance. We leave
the finite-key regime as future work.

B. Classical Advantage Distillation (CAD)

After key-pool segmenting as described above, some key
pools may have high noise. For such pools, CAD [22] can
be used to extract additional secret key material from noisy
raw key-pools. While CAD is a well-established tool, we
discuss it here for two reasons: (i) apply it to our networks
and quantify its resulting benefits, and (ii) demonstrate that
there is an interesting interplay between CAD and the key-
pool segmenting technique that we propose: in some network
configurations, combining them can lead to positive key rates,
which cannot be achieved using one technique alone (see
Section V).

CAD is a post-processing method undertaken by two parties
once their raw key pool has been generated. For ease of
exposition, we describe CAD assuming the two parties are
Alice and Bob; in our setting, they can be any two parties,
Ti and Tj . We use specifically the CAD process in [36],

6



[37]. Prior to error correction, the two parties engage in the
following procedure for a pre-determined CAD level C � 1:

1) Alice selects C raw key bits that all have the same value,
sending their corresponding indices to Bob.

2) Bob notifies Alice whether or not, in his raw key, those
C bits take the same value.

3) If these C bits take the same value in Bob’s raw key, then
Alice and Bob shrink the block of C bits into a single
bit, and add the bit to a new raw key string; otherwise
no new bit is added to their new raw key. Either way,
they discard these C bits.

4) Alice and Bob repeat this process until the entire original
key has been depleted.

When running CAD with blocks of size C, it is clear that the
raw key will shrink to, at a minimum, 1=C of the original
length. If the key is noisy, it may shrink even more. At low
noise levels, CAD does not improve key rate (or equivalently,
C = 1 is optimal), but as the noise level increases, the
optimal C also increases. As an example, for C = 2, the noise
tolerance of the E91 protocol increases from the usual 11%
to 18:2% [36], [37]. For a given noise rate and CAD level
C, one can compute the final key rate in a straightforward
manner using results in [36]. CAD can be used with and
without the key-pool segmenting technique. When the key-
pool segmenting technique is used, we use the noise estimates
for each individual sub-pool to select the optimal CAD level.

V. EVALUATION RESULTS FOR GRID TOPOLOGIES

In this section, we use simulations to evaluate the per-
formance of the dynamic routing strategies, as well as the
impact of key-pool segmenting and CAD on the resultant
key rate. We focus on a simple grid topology; evaluation
using random graphs is deferred to Section VI. Our goal is
illustrating the benefits of the dynamic routing strategies and
the post-processing techniques, and also when they may be
less helpful. Specifically, we consider a square grid of size
7 � 7, with Alice and Bob located at the corners, embedded
in an another square 9� 9 grid. The link success probability
P and BSM success probability R are set to 0.96 and 0:85,
respectively; they will be varied in Section VI for random
graphs. The decoherence rate varies from 0 to 0.08, modeling
a range of technologies [23].

The results for dynamic routing strategies below are ob-
tained using the basic algorithm; using the extended algorithm
leads to the same results. While the dynamic routing strategies
can be used with any underlying routing algorithms, for
simplicity, we use it with the distance-based routing algorithm
in Section III-A; using it with other routing algorithms is left
as future work. Each result was obtained over 107 network
rounds, using a custom-built simulator written in Python.

A. Results of Dynamic Routing Strategy

We consider several scenarios with asymmetric TN place-
ment. For each scenario, we present the performance of our
dynamic routing strategy as decoherence rate increases, and
compare the key rates with those obtained using the static

T1

A

B

(a) OFF-CENTER setting.

0.00 0.02 0.04 0.06 0.08
Decoherence Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ke
y 

Ra
te

1-TN-Ideal
0-TN
Dynamic
Static

(b) Key rate.
Fig. 4. Grid topology with one TN placed off the center: comparison of
dynamic and static strategies.

strategy. For reference, we also show the key rate when using
one or two TNs under ideal placement, referred to as 1TN-
IDEAL and 2TN-IDEAL, where one or two TNs are evenly
placed along the diagonal of the grid. In addition, we also
show the results with no TN. In all the results below, the key
rates with no TN are significantly lower than those with TNs,
demonstrating the benefits of using TNs, even at asymmetric
locations.

Single TN. Fig. 4a shows an OFF-CENTER setting where a
single TN is placed along the diagonal, closer to Alice than
Bob. Fig. 4b shows the key rate under static and dynamic
strategies for this setting. For reference, it also plots the results
under 1TN-IDEAL setting. We see that the dynamic strategy
leads to significantly higher key rate than the static strategy.
For instance, when there is no decoherence, the dynamic
strategy leads to a key rate of 0.345, 64% higher than the value
(0.210) under the static strategy. When the decoherence rate is
0.02, the improvement is 78% (0.066 vs. 0.037). As expected,
even under the dynamic strategy, the key rate in OFF-CENTER
setting is lower than that under 1TN-IDEAL, due to the longer
distance between the TN and Bob.

Two TNs. We consider three settings: Fig. 5a and b show two
settings where the two TNs are placed along the diagonal;
Fig. 5c shows one setting where one TN is on the diagonal,
while the other is off the diagonal. We refer to the first
setting as DIAG-2-6-4, where the three numbers represent the
Manhattan distances between Alice and T1, between T1 and
T2, and between T2 and Bob, respectively. Similarly, we refer
to the second setting as DIAG-4-2-6. In the third setting, T1

is on the diagonal, with Manhattan distance 2 from Alice, and
T2 is off the diagonal, equidistant from both Bob and T1 (both
with Manhattan distance 5), and we refer to it as OFF-DIAG
setting. Fig. 5d-f show the results of the above three settings.
The results under 1TN-IDEAL and 2TN-IDEAL are also shown
in these figures.

The DIAG-2-6-4 setting differs from 2TN-IDEAL in that
TN T1 is closer to Alice, causing the distance between the
two TNs, T1 and T2, to be larger. In this setting, we ob-
serve significant benefits of using dynamic over static routing
strategy. With no decoherence, the key rate of the dynamic
routing strategy is 0.531, more than 2� of that under the static

7



T1

T2

A

B

(a) DIAG-2-6-4 setting.

T1

T2

A

B

(b) DIAG-4-2-6 setting.

T1

T2

A

B

(c) OFF-DIAG setting.

0.00 0.02 0.04 0.06 0.08
Decoherence Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ke
y 

Ra
te

2-TN-Ideal
1-TN-Ideal
0-TN
Dynamic
Static

(d) Results for DIAG-2-6-4 setting.

0.00 0.02 0.04 0.06 0.08
Decoherence Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ke
y 

Ra
te

2-TN-Ideal
1-TN-Ideal
0-TN
Dynamic
Static

(e) Results for DIAG-4-2-6 setting.

0.00 0.02 0.04 0.06 0.08
Decoherence Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ke
y 

Ra
te

2-TN-Ideal
1-TN-Ideal
0-TN
Dynamic
Static

(f) Results for OFF-DIAG setting.
Fig. 5. Grid topology with two TNs at asymmetric locations: comparison of dynamic and static strategies.

routing strategy (0.258), and also slightly higher than 1TN-
IDEAL (which has key rate 0.496). In general, the dynamic
routing strategy achieves slightly higher or similar key rate as
the 1TN-IDEAL setting for all the decoherence rates.

The DIAG-4-2-6 setting differs from 2TN-IDEAL in that
T2 is closer to T1, causing the distance between T2 and Bob
to be larger. In this case, since the two TNs are so close to
each other, they work similarly as a single TN. As a result,
we observe much less benefit under the dynamic strategy over
the static strategy (e.g., leading to 7.7% improvement in key
rate when the decoherence rate is 0.0). The results are also
very close to those under the 1TN-IDEAL setting.

Last, in the OFF-DIAG setting, we see that the dynamic
strategy outperforms the static strategy when the decoherence
rate is low. As an example, when the decoherence rate is 0.0,
the key rate under dynamic routing is 0.56, 7.7% higher than
that under static routing (0.52), and only 17% lower than the
2TN-IDEAL setting. Interestingly, in this setting, with the two
TNs, both dynamic and static routing strategies achieve visibly
higher key rate than the 1TN-IDEAL setting.

B. Results of Classical Post-Processing
We now evaluate the impact of the two classical post-

processing techniques, CAD and our key-pool segmenting, on
key rate. For ease of exposition, we consider four settings,
NO-TN, 1TN-IDEAL and 2TN-IDEAL as described earlier,
and 2TN-CORNER (i.e., two TNs at the two corners of the
grid). For all these settings, it is sufficient to use the static
routing strategy, since they either have no TN or the TN(s)
are placed at symmetric location(s). In Section V-C, we use
the dynamic routing strategy with these two post-processing

techniques for scenarios with asymmetric TN placement. Since
both key-pool segmenting and CAD tend to bring benefits at
high noise rates (and therefore at low key rates), we plot the
graphs below on a log-linear scale to highlight the benefits of
these two techniques.

The NO-TN setting (Fig. 6a) serves as the baseline. In
this setting, we see that CAD and key-pool segmenting each
improves key rate when the decoherence rate is larger than
0.02. In addition, combining these two techniques can improve
the key rate significantly than using them in isolation, e.g.,
leading to an order of magnitude improvement in key rate
when the decoherence rate is 0.03.

In 1TN-IDEAL and 2TN-IDEAL settings (Fig. 6b and c),
while key-pool segmenting does improve key rate significantly
when the decoherence rate D � 0:03, using key-pool egment-
ing and CAD together only brings slightly higher key rate
beyond what is already provided by CAD. The observation
is different in the 2TN-CORNER setting (Fig. 6d), where we
observe significantly higher benefits from combining key-pool
segmenting and CAD over using each technique separately.
The significantly higher benefits from key-pool segmenting
beyond CAD in this setting might be because the TNs are
at the two corners, and hence can lead to more diverse
path lengths, resulting in more visible benefits from key-pool
segmenting, which differentiates paths of diverse qualities.

C. Results of Dynamic Routing Strategy with Post-Processing

We now evaluate the benefits of combining the dynamic
routing strategy and the two post-processing methods for
the settings with asymmetric TN placement. Specifically, we

8



(a) NO-TN. (b) 1TN-IDEAL. (c) 2TN-IDEAL. (d) 2TN-CORNER.
Fig. 6. Grid topology: performance of CAD and key-pool segmenting (KS) techniques with static routing strategy (which suffices for these settings).

(a) OFF-CENTER. (b) DIAG-2-6-4. (c) DIAG-4-2-6. (d) OFF-DIAG.
Fig. 7. Grid topology: key rate when combining dynamic routing strategy and post-processing techniques.

consider four asymmetric settings that we considered earlier:
one with a single TN, i.e., OFF-CENTER, the other three with
two TNs, i.e., DIAG-2-6-4, DIAG-4-2-6, and OFF-DIAG. Since
post-processing techniques only bring benefits under high
noise rates, Fig. 7 only plots the key rate when the decoherence
rate D � 0:03. We see that for all the settings, adding post-
processing to the raw key pools obtained from the dynamic
routing strategy improves the key rate (comparing the solid
and dashed black lines), and the benefits are particularly clear
under DIAG-2-6-4 and DIAG-4-2-6. The above benefits are
expected since the dynamic routing strategy can lead to much
longer paths, and higher noise rate, which can benefit from
post-processing techniques. For comparison, Fig. 7 also plots
the key rate under the static strategy, with and without post-
processing. As expected, the benefits of using post-processing
techniques become much less noticeable, since shorter paths
are chosen with higher priority at all times under the static
strategy.

VI. EVALUATION RESULTS FOR RANDOM GRAPHS

We now consider random geometric graphs where nodes are
randomly placed in an area and two nodes are connected by
a link if their distance is less than a radius r. Specifically, we
consider a unit square area with 50 nodes. We vary r to 0.2,
0.25 and 0.3 (we do not set r less than 0.2 since such values
often lead the graph disconnected). For each r, we create 10
random graphs. With r = 0:2, 0.25 and 0.3, the average node
degree is 5.0, 7.7, and 10.2, and the standard deviation of node

degree is 2.4, 3.2, and 3.7, respectively. In each graph, Alice
and Bob are placed close to the two opposite corners of the
graph. We set BSM success probability R to be 0.85 or 0.95,
and link success probability P to 0.85 and 0.96, leading to four
combinations of R and P values. As earlier, we assume that
one or two TNs are used for QKD between Alice and Bob.
The TNs are placed randomly along a stripe between Alice
and Bob, which naturally lead to asymmetric TN placement
between Alice and Bob due to the random topology.

In the following, we compare the results when using static
versus dynamic routing strategy with various settings of BSM
success probability R, link success probability P , graph radius
r, and the number of TNs. For each setting, the decoherence
rate is again varied from 0 to 0.08. The two classical post-
processing techniques (key-pool segmenting and CAD) are
used in all the settings. The dynamic routing strategy uses
the extended algorithm in Section III-B2.

Single TN. Fig. 8a-d plot the results when using a single TN
under the four combinations of R and P when decoherence
rate varies from 0 to 0.08. In each figure, we compare the
results of dynamic and static routing strategies when the radius
r = 0:2 or 0.3; the results when r = 0:25 are in between and
omitted for clarity. For comparison, the results with no TN
are also plotted in the figure. Each point in the graph is the
average value of 100 settings, i.e., 10 random graphs and 10
random placements of a single TN in each graph. As expected,
for a given strategy and R and P combination, the key rate is

9


