Learning an Adaptive Forwarding Strategy for Mobile Wireless Networks: Resource Usage vs. Latency

Victoria Manfredi, Alicia Wolfe, Xiaolan Zhang, Bing Wang

Reinforcement Learning for Real Life Workshop @ NeurIPS 2022

Abstract

Mobile wireless networks present several challenges for any learning system, due to uncertain and variable device movement, a decentralized network architecture, and constraints on network resources. In this work, we use deep reinforcement learning (DRL) to learn a scalable and generalizable forwarding strategy for such networks. We make the following contributions: i) we use hierarchical RL to design DRL packet agents rather than device agents, to capture the packet forwarding decisions that are made over time and improve training efficiency; ii) we use relational features to ensure generalizability of the learned forwarding strategy to a wide range of network dynamics and enable offline training; and iii) we incorporate both forwarding goals and network resource considerations into packet decision-making by designing a weighted DRL reward function. Our results show that our DRL agent often achieves a similar delay per packet delivered as the oracle forwarding strategy and outperforms all other strategies including state-of-theart strategies, even on scenarios on which the DRL agent was not trained.

1. Packet Forwarding in Mobile Wireless Networks

Devices are moving: infrastructure-less network simplifies deployment

5. Competing Goals

How to trade-off competing network goals such as packet delay vs. resource usage?

Solution: Use a **weighted** reward function

$$r_{stay} = -1$$
, $r_{transmit} = \alpha r_{stay}$, $r_{drop} = \frac{r_{transmit}}{1-\gamma}$, $r_{delivery} = 0$
where $\alpha = -1, -2, -10$ and $\gamma = 0.99$

Impact of reward during training

Making optimal forwarding decisions is hard: changing network conditions, limited communication windows, decentralized architecture, competing network goals....

Solution: learn how to forward using deep reinforcement learning

2. Who chooses actions?

Normally a device chooses a packet's next hop ... but a device's state doesn't track what happens to the packet

Solution: Use **packet agents** to simplify *s*, *a*, *s'*, *r* experience sequence and reward definition

3. Generalizable States and Actions

How to use the same forwarding strategy for topologies with different connectivity and device mobility?

6. Efficient Training

Network architecture is decentralized, complicating training as exchange of training information is limited by communication opportunities

Solution: Use offline training, leveraging relational features. Use fixed policy options to model decisions that take multiple timesteps, like a packet waiting in a queue before making a forwarding decision.

7. Performance Evaluation

Compare the performance of DRL agent, an oracle-based delay minimizing strategy (Oracle), a transmission minimizing strategy (Direct transmission), and two state-of the art strategies (Utility and Seek-and-Focus)

Packet p separately considers each action u

- device features $f_{device}(u, d)$,
- neighborhood features $f_{nbrhood}(u, d)$,
- device features $f_{device}(u, d)$, and
- context features $f_{context}(p, u)$ which indicate whether p has recently visited u

Solution: Use **relational features** that model the relationship between devices instead of describing a specific device

4. Varying Numbers of Actions

Varying numbers of neighbors means varying numbers of actions, but # of inputs to DNN are fixed

Solution: Use DNN separately to predict Q-value for **each** action available in a state

DRL agent # of forwards is not far from Oracle and significantly better than Seek-and-focus

Takeaways: DRL agent is trained on 25 device network with tx range of 50m, generalizes to 64 and 100 device networks with tx ranges of 30 to 80m

8. Conclusions and Future Work

Conclusions: possible to use DRL to learn a scalable and generalizable forwarding strategy for mobile wireless networks. We propose three key ideas: i) packet agents, ii) relational features, and iii) a weighted reward function.

Future work: feature ablation, more diverse mobility, more features to characterize diverse mobility, device decision-making to complement packet agents, and refining reward function.

Acknowledgements: This material is based upon work supported by the National Science Foundation (NSF) under award #2154190. Results presented in this paper were obtained in part using CloudBank, which is partially supported by the NSF under award #2154190. The authors also acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing HPC and consultation resources that have contributed to the research results reported within this paper.