Learning an Adaptive Forwarding Strategy for Mobile Wireless Networks: Resource Usage vs. Latency

Victoria Manfredi, Alicia Wolfe, Xiaolan Zhang, Bing Wang

Reinforcement Learning for Real Life Workshop @ NeurIPS 2022

Mobile wireless networks

Applications include

 vehicular safety, animal tracking, search-and-rescue, military ...

Devices are moving

- lack of infrastructure simplifies deployment
- devices generate and forward traffic

Problem: forwarding traffic is hard

- changing network conditions: mobility, interference, traffic ...
- limited communication windows: difficult to predict
- decentralized architecture: online training is difficult
- competing network goals: throughput, delay, resource usage

Mobile wireless networks

Applications include

 vehicular safety, animal tracking, search-and-rescue, military ...

Devices are moving

- lack of infrastructure simplifies deployment
- devices generate and forward traffic

Problem: forwarding traffic is hard

- changing network conditions: mobility, interference, traffic ...
- limited communication windows: difficult to predict
- decentralized architecture: online training is difficult
- competing network goals: throughput, delay, resource usage

Solution: learn how to forward using deep reinforcement learning

1. Packet-centric decisions

Problem: Normally a device chooses a packet's next hop ... but a device's state doesn't track what happens to the packet

2. Independent decisions

3. Relational features

1. Packet-centric decisions

2. Independent decisions

Problem: Normally a device chooses a packet's next hop ... but a device's state doesn't track what happens to the packet

2 Deletional factures

Solution: Use **packet agents** to simplify s, a, s', r experience sequence and define reward

4. Weighted reward function

Packet p_1 chooses its next hop at each device

1. Packet-centric decisions

Problem: Mobile network connectivity varies, but # of inputs to DNN are fixed

2. Independent decisions

3. Relational features

1. Packet-centric decisions

Problem: Mobile network connectivity varies, but # of inputs to DNN are fixed

Solution: Use DNN separately to predict Q-value for *each action* available in a state

2. Independent decisions

3. Relational features

4. Weighted reward function

How packet p at device \boldsymbol{v} chooses next hop

- For each (state, action) pair, inputs features into DNN to get *Q*-value
- p chooses action that gives highest Q-value

1. Packet-centric decisions

Problem: How to define generalizable states and actions?

2. Independent decisions

3. Relational features

1. Packet-centric decisions

2. Independent decisions

Problem: How to define generalizable states and actions?

Solution: Use relational features that model the relationship between devices instead of describing a specific device

Path features $f_{path}(v, d)$: distance from v to d

1. Packet-centric decisions

2. Independent decisions

Problem: How to define generalizable states and actions?

Solution: Use relational features that model the relationship between devices instead of describing a specific device

1. Packet-centric decisions

Problem: How to trade-off competing network goals such as packet delay vs. resource usage?

2. Independent decisions

3. Relational features

1. Packet-centric decisions

Problem: How to trade-off competing network goals such as packet delay vs. resource usage?

Solution: Use a weighted reward function

$$r_{transmit} = \alpha r_{stay}, \ r_{delivery} = 0, \ r_{drop} = \frac{r_{transmit}}{1 - \gamma}$$

3. Relational features

Generalization is possible!

Generalization is possible!

Train on 25 node network with transmission range of 50m, generalize to 64 and 100 node networks with transmission ranges of 30 to 80m!

Summary and future work

Designed novel decentralized forwarding algorithm for mobile networks

Key ideas: Relational features, offline centralized training/online distributed testing, extended time action aka options

Future work: • Mobile networks

- Flexibility in which packet in queue to send
- Super DeepRL strategy trained on multiple different scenarios
- Understanding extent of generalization ability

vumanfredi@wesleyan.edu https://victoriamanfredi.com

Backup